Abstract:
A method of producing a lenticular printed material includes: an ink jetting step of jetting an aqueous ink, containing a colorant, resin particles, water and a water-soluble high boiling point solvent, onto an ink receiving layer of a lenticular sheet including a resin layer, a lens layer disposed at one surface side of the resin layer, and the ink receiving layer, which is disposed at the other surface side of the resin layer, which contains particles and a resin, and which has a porous structure and a void volume of 50% or greater, according to an ink jetting method; and a drying step of drying the aqueous ink, under conditions in which a surface temperature of the ink receiving layer is set to 30° C. or higher, to form a parallax picture.
Abstract:
Provided are a method of producing a lenticular printed material including: a step of forming a parallax picture, using a recording medium which includes a resin layer and a water-absorbing layer laminated on the resin layer, by applying aqueous ink which contains water and a colorant to the water-absorbing layer of the recording medium according to an ink jet system; and a step of bonding a lenticular lens onto a side of the water-absorbing layer where the parallax picture of the recording medium is formed, and a lenticular printed material produced by the method.
Abstract:
A lenticular display includes a lenticular image including an image strip group in which display image strips that are respectively extracted in the form of a stripe from a plurality of display images are arrayed adjacently to each other in their respective corresponding positions, and in which an interpolation image strip is disposed between display image strips that are adjacent to each other, that are extracted from different display images, and that have different colors in at least a portion thereof, the interpolation image strip having a color that is in between the color of one of the adjacent display image strips and the color of the other of the adjacent display image strips.
Abstract:
The present invention provides a lenticular sheet including a transparent resin substrate stretched in at least one direction, an ink receiving layer provided on one surface side of the transparent resin substrate, and a lenticular lens layer provided on the other surface side of the transparent resin substrate, in which the ink receiving layer is formed on the one surface side of the transparent resin substrate by stretching a transparent resin substrate which is not stretched or stretched in a first direction and on which a coating layer is formed by coating one surface side of the substrate with a coating solution for forming an ink receiving layer; a method for manufacturing a lenticular sheet; and a lenticular display body.
Abstract:
A method is provided which enables a drug to be concentrated at needle-like protruding portions and which further allows transdermal-absorption sheets to be manufactured at high production efficiency. The method repeats a step of feeding a drug-containing solution from a liquid feeding apparatus to a mold and filling needle-like recessed portions with the drug-containing solution through a nozzle aligned over the needle-like recessed portions in a state where the nozzle and a front surface of the mold are brought into contact with each other, and a step of moving the liquid feeding apparatus relative to the mold in a state where the nozzle and the front surface of the mold are brought into contact with each other. Thus, the two-dimensionally arranged needle-like recessed portions are filled with the drug-containing solution.
Abstract:
A needle array transdermal absorption sheet to be attached onto a skin for supplying a drug into the skin, includes: a plurality of needle portions each having a tapered shape, each of the needle portions including a needle having a conical or pyramidal shape and a body part which has a columnar shape and whose end surface is connected to a base of the needle; a sheet portion having a flat-plate shape; and a plurality of frustum portions each having a frustum shape, the frustum portions which are arranged on a surface of the sheet portion in a manner that perimeters of larger bases of adjacent frustum portions are in contact with each other on the surface of the sheet portion, and smaller bases of which are respectively connected to the body parts of the needle portions.
Abstract:
Provided is a lenticular display including a lenticular lens including a plurality of columnar convex lenses that each have a semicylindrical surface and are arrayed in parallel and a lenticular image disposed on an opposite side of the convex lenses from the semicylindrical surface. The lenticular image includes an image strip group in which a plurality of image strips for displaying a plurality of display images respectively are arranged in positions for causing the image strips to be displayed through the plurality of convex lenses respectively in a state where a longitudinal direction of the image strips is parallel to a longitudinal direction of the plurality of convex lenses, and in the image strip groups, and a total width of image strips for displaying at least one display image among the plurality of display images is larger than a total width of image strips for displaying another display image.
Abstract:
Provided is a method of producing a transparent resin base printed material, including: a treatment liquid applying step of applying a treatment liquid which contains an acidic compound onto a transparent resin base material; an ink jetting step of jetting an aqueous ink, which contains a colorant, resin particles, water, and a solvent having a boiling point of 150° C. to 250° C. and in which the content of a solvent having a boiling point of higher than 250° C. is 1% by mass or less with respect to the total mass of the ink, onto the transparent resin base material to which the treatment liquid has been applied according to an ink jet system; and a drying step of drying the aqueous ink under a condition in which the surface temperature of the transparent resin base material is in a range of 60° C. to 100° C.
Abstract:
A transdermal absorption sheet and a manufacturing method for the transdermal absorption sheet includes a laminating step of forming a multilayer film with a viscosity difference by forming, on a support, a lower layer containing a first transdermal absorption material and an upper layer containing a drug and a second transdermal absorption material and having a lower viscosity than the lower layer, a filling step of filling needle-like recessed portions corresponding to inverted needle-like protruding portions with a solution of the transdermal absorption material by pressing a mold in which the needle-like recessed portions are arranged in a two-dimensional array, against a surface of the multilayer film supported by the support to allow the multilayer film to flow, a solidifying step of solidifying the multilayer film with the mold pressed against the surface of the multilayer film, and a peeling-off step of peeling the solidified multilayer film from the mold.
Abstract:
A molding compact for forming a transdermal absorption sheet on which a needle-shaped protruding part is arranged is a molding compact that is a laminate of: a first member having a needle-shaped recessed part formed on a front surface thereof, the needle-shaped recessed part being an inverse of the needle-shaped protruding part; a second member provided on a back surface of the first member, the second member being composed of a waterproof and moisture-permeable material; and a third member provided on a back surface of the second member, the third member being composed of a rigid body. Provided are a molding compact that makes it possible to prevent leakage of a drug-containing solution filled into the needle-shaped recessed part, and a manufacturing method for a transdermal absorption sheet using the molding compact.