Abstract:
A forming tool with one or more embossing tooth, and preferably, a plurality of such embossing teeth, arranged on a substantially planar substrate, is disclosed. Each embossing tooth is configured for forming a sacrificial layer to provide a contoured surface for forming a microelectronic spring structure. Each embossing tooth has a protruding area corresponding to a base of a microelectronic spring, and a sloped portion corresponding to a beam contour of a microelectronic spring. Numerous methods for making a forming tool are also disclosed. The methods include a material removal method, a molding method, a repetitive-stamping method, tang-bending methods, and segment-assembly methods.
Abstract:
A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.
Abstract:
A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device over the compliant pad to its end area. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. A horizontal microelectronic spring contact and method of making the same are also disclosed. The horizontal spring contact has a rigid trace attached at a first end to a terminal of a substrate. The trace is free from attachment at its second end, and extends from the terminal in a direction substantially parallel to a surface of the substrate to/the second end. At least a distal portion of the trace extending to the second end is spaced apart from the surface of the substrate. The spaced-apart distal portion is flexible in a plane parallel to the substrate.
Abstract:
A method of fabricating and using an interconnection element that includes a first element material adapted to be coupled to a substrate and a second element material comprising a material having a transformable property such that upon transformation, a shape of the interconnection is deformed. An example is a material that has a transformable property such that a volume of the first and/or second element material may undergo a thermal transformation from one volume to a different volume (such as a smaller volume) resulting in the deformation of the interconnection element.