摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An alignment system for a lithographic apparatus has a source of alignment radiation; a detection system that has a first detector channel and a second detector channel; and a position determining unit in communication with the detection system. The position determining unit is constructed to process information from said first and second detector channels in a combination to determine a position of an alignment mark on a work piece, the combination taking into account a manufacturing process of the work piece. A lithographic apparatus has the above mentioned alignment system. Methods of alignment and manufacturing devices with a lithographic apparatus use the above alignment system and lithographic apparatus, respectively.
摘要:
An opto-electrical ultrasound sensor, preferably for the use in medical diagnostics, comprising at least one light source (2), a photo detector (3) illuminated by the light source (2) and capable of producing an electrical signal indicative of the intensity of the light incident on the photo detector (3), and an optical ultrasound detector (4) located in the optical path between the light source (2) and the photo detector (3) and capable of modulating in response to an ultrasound signal the intensity of at least part of the light incident on photo detector (3) from the light source (2). The opto-electrical ultrasound sensor further comprises intensity adjustment means (5) for adjusting the intensity of the light incident on the photo detector (3) via the optical ultrasound detector (4).
摘要:
A method for optimizing an alignment condition of a lithographic projection apparatus. This method comprises projecting a beam of radiation on a target portion of a substrate and measuring a plurality of diffracted signals emitted by the target portion. This method further comprises calculating a variance for each of the plurality of diffracted signals, such that a plurality of variances of the diffracted signals is determined, and adjusting the alignment condition of the lithographic projection apparatus based on analysis of the plurality of variances.
摘要:
An opto-electrical ultrasound sensor, preferably for the use in medical diagnostics, comprising at least one light source (2),a photo detector (3) illuminated by the light source (2) and capable of producing an electrical signal indicative of the intensity of the light incident on the photo detector(3), and an optical ultrasound detector (4) located in the optical path between the light source (2) and the photo detector (3) and capable of modulating in response to an ultrasound signal the intensity of at least part of the light incident on photo detector (3) from the light source (2). The opto-electrical ultrasound sensor further comprises intensity adjustment means (5) for adjusting the intensity of the light incident on the photo detector (3) via the optical ultrasound detector (4).