Abstract:
Methods of forming edge etch protection using dual layers of positive-negative tone resists. According to a method, a wafer substrate is provided. A first type resist is deposited on a surface of the wafer substrate. The first type resist is patterned and a resist ring is created around a peripheral edge of the wafer substrate. The resist ring is cured. A second type resist is deposited on the surface of the wafer substrate and the resist ring. The second type resist is different from the first type resist.
Abstract:
The formation of TSVs (through substrate vias) for 3D applications has proven to be defect dependent upon the type of starting semiconductor substrate employed. In addition to the initial formation of TSVs via Bosch processing, backside 3D wafer processing has also shown a defect dependency on substrate type. High yield of TSV formation can be achieved by utilizing a substrate that embodies bulk micro defects (BMD) at a density between 1e4/cc (particles per cubic centimeter) and 1e7/cc and having equivalent diameter less than 55 nm (nanometers).
Abstract:
Device structures for a deep trench capacitor and methods of fabricating device structures for a deep trench capacitor. A dielectric layer is formed on a substrate and an opening is formed that extends from a top surface of the dielectric layer through the dielectric layer. A deep trench is formed in the substrate and is aligned with the opening in the dielectric layer. A plate of a deep trench capacitor is formed that is located at least partially inside the deep trench and at least partially inside the opening in the dielectric layer. A diffusion pad is formed that arranged at the top surface of the dielectric layer relative to the opening such that the diffusion pad is coupled with the plate of the deep trench capacitor.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to Through-Silicon Via (TSV) structures with improved substrate contact and methods of manufacture. The structure includes: a substrate of a first species type; a layer of different species type on the substrate; a through substrate via formed through the substrate and comprising an insulator sidewall and conductive fill material; a second species type adjacent the through substrate via; a first contact in electrical contact with the layer of different species type; and a second contact in electrical contact with the conductive fill material of the through substrate via.
Abstract:
Through-substrate vias (TSVs) include a strain engineering layer configured to minimize or otherwise control local stress fields. The strain engineering layer can be separate from and in addition to a TSV sidewall isolation layer that is deposited along the via sidewall surface for the purpose of electric isolation. For instance, the strain engineering layer can be a partial depth layer that extends over only a portion of the TSV sidewall.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to Through-Silicon Via (TSV) structures with improved substrate contact and methods of manufacture. The structure includes: a substrate of a first species type; a layer of different species type on the substrate; a through substrate via formed through the substrate and comprising an insulator sidewall and conductive fill material; a second species type adjacent the through substrate via; a first contact in electrical contact with the layer of different species type; and a second contact in electrical contact with the conductive fill material of the through substrate via.
Abstract:
Through-substrate vias (TSVs) include a strain engineering layer configured to minimize or otherwise control local stress fields. The strain engineering layer can be separate from and in addition to a TSV sidewall isolation layer that is deposited along the via sidewall surface for the purpose of electric isolation. For instance, the strain engineering layer can be a partial depth layer that extends over only a portion of the TSV sidewall.