Microwave annealing of flowable oxides with trap layers

    公开(公告)号:US10211045B1

    公开(公告)日:2019-02-19

    申请号:US15878502

    申请日:2018-01-24

    Abstract: An insulator is formed by flowable chemical vapor deposition (FCVD) process. The insulator is cured by exposing the insulator to ultraviolet light while flowing ozone over the insulator to produce a cured insulator. The curing process forms nitrogen, hydrogen, nitrogen monohydride, or hydroxyl-rich atomic clusters in the insulator. Following the curing process, these methods select wavelengths of microwave radiation (that will be subsequently used during annealing) so that such wavelengths excite the nitrogen, hydrogen, nitrogen monohydride, or hydroxyl-rich atomic clusters. Then, these methods anneal the cured insulator by exposing the cured insulator to microwave radiation in an inert (e.g., non-oxidizing) ambient atmosphere, at a temperature below 500° C., so as to increase the density of the cured insulator.

    Fin reveal forming STI regions having convex shape between fins

    公开(公告)号:US10832965B2

    公开(公告)日:2020-11-10

    申请号:US15868229

    申请日:2018-01-11

    Abstract: Integrated circuit devices include trenches in a material layer that divide the material layer into fins. With such devices, an insulator partially fills the trenches and contacts the material layer. The top surface of the insulator (e.g., the surface opposite where the insulator contacts the material layer) has a convex dome shape between at least two of the fins. The dome shape has a first thickness from (from the bottom of the trench) where the insulator contacts the fins, and a second thickness that is greater than the first thickness where the insulator is between the fins. Further, there is a maximum thickness difference between the first and second thicknesses at the midpoint between the fins (e.g., the highest point of the dome shape is at the midpoint between the fins). Also, the top surface of the first insulator has concave divots where the first insulator contacts the fins.

    FIN REVEAL FORMING STI REGIONS HAVING CONVEX SHAPE BETWEEN FINS

    公开(公告)号:US20190214308A1

    公开(公告)日:2019-07-11

    申请号:US15868229

    申请日:2018-01-11

    Abstract: Integrated circuit devices include trenches in a material layer that divide the material layer into fins. With such devices, an insulator partially fills the trenches and contacts the material layer. The top surface of the insulator (e.g., the surface opposite where the insulator contacts the material layer) has a convex dome shape between at least two of the fins. The dome shape has a first thickness from (from the bottom of the trench) where the insulator contacts the fins, and a second thickness that is greater than the first thickness where the insulator is between the fins. Further, there is a maximum thickness difference between the first and second thicknesses at the midpoint between the fins (e.g., the highest point of the dome shape is at the midpoint between the fins). Also, the top surface of the first insulator has concave divots where the first insulator contacts the fins.

    Fin structures
    6.
    发明授权

    公开(公告)号:US10790198B2

    公开(公告)日:2020-09-29

    申请号:US16058494

    申请日:2018-08-08

    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to fin structures and methods of manufacture. The structure includes: a plurality of fin structures formed of substrate material; a semiconductor material located between selected fin structures of the plurality of fin structures; and isolation regions within spaces between the plurality of fin structures.

    SHALLOW TRENCH ISOLATION (STI) GAP FILL
    7.
    发明申请

    公开(公告)号:US20190027556A1

    公开(公告)日:2019-01-24

    申请号:US15656574

    申请日:2017-07-21

    Abstract: A method of forming a shallow trench isolation (STI) for an integrated circuit (IC) structure to mitigate fin bending disclosed. The method may include forming a first insulator layer in a first portion of an opening in a substrate by a bottom-up atomic layer deposition (ALD) process; and forming a second insulator layer on the first insulator layer in a second portion of the opening. The opening may be position between a set of fins in the substrate. The method may further include forming an oxide liner in the opening before the forming the first insulator layer. The second insulator layer may be formed by deposition using a flowable chemical vapor deposition (FCVD) process, high aspect ratio process (HARP), high-density plasma chemical vapor deposition (HDP CVD) process, or any other conventional insulator material deposition process.

    Silicon liner for STI CMP stop in FinFET

    公开(公告)号:US09984933B1

    公开(公告)日:2018-05-29

    申请号:US15723416

    申请日:2017-10-03

    Abstract: A hardmask is patterned on a first material to leave hardmask elements. The first material is patterned into fins through the hardmask. A layer of silicon is formed on the hardmask elements and the fins in processing that forms the layer of silicon thicker on the hardmask elements relative to the fins. An isolation material is formed on the layer of silicon to leave the isolation material filling spaces between the fins. The isolation material and the layer of silicon are annealed to consume relatively thinner portions of the layer of silicon and leave the layer of silicon on the hardmask elements as silicon elements. A chemical mechanical polishing (CMP) is performed on the isolation material to make the isolation material planar with the silicon elements. A first etching agent removes the silicon elements on the hardmask elements, and a second chemical agent removes the hardmask elements.

Patent Agency Ranking