Abstract:
Methods for identification and partial re-routing of selected areas (e.g., including critical areas) in a layout of an IC design and the resulting device are disclosed. Embodiments include comparing design data of an IC device against criteria of manufacturing processes to manufacture the IC device; identifying in the design data a layout area based, at least in part, on proximity of metal segments, interconnecting segments, or a combination thereof in the layout area; performing partial re-routing in the layout area to substantially meet the criteria, wherein at least one interconnecting element is shifted or extended; and integrating the partial re-routing into the design data for use in the manufacturing processes.
Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to gap fill void and connection structures and methods of manufacture. The structure includes: a gate structure comprising source and drain regions; a gate contact in direct contact and overlapping the gate structure; and source and drain contacts directly connecting to the source and drain regions, respectively.
Abstract:
Methods for identification and partial re-routing of selected areas (e.g., including critical areas) in a layout of an IC design and the resulting device are disclosed. Embodiments include comparing design data of an IC device against criteria of manufacturing processes to manufacture the IC device; identifying in the design data a layout area based, at least in part, on proximity of metal segments, interconnecting segments, or a combination thereof in the layout area; performing partial re-routing in the layout area to substantially meet the criteria, wherein at least one interconnecting element is shifted or extended; and integrating the partial re-routing into the design data for use in the manufacturing processes.
Abstract:
A method and apparatus for generating a final dielectric etch compensation table and a final hard mask etch compensation table for either OPC or MPC process flows are provided. Embodiments include performing an overlap pattern classification on a wafer; calibrating a dielectric etch bias or a hard mask etch bias based on the pattern classification; comparing either a CD overlap of a via layer with a metal layer and a CD overlap of the via layer with a lower connecting metal layer or a CD overlap of the metal layer with an upper connecting via layer and a CD overlap of the metal layer with the via layer against a criteria; outputting final dielectric etch compensation and hard mask etch compensation tables to either OPC or MPC process flows; and repeating the steps of calibrating, comparing, and outputting for either the via layer or metal layer remaining.
Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.