Abstract:
Devices and methods for forming semiconductor devices with fins at tight fin pitches are provided. One method includes, for instance: obtaining an intermediate semiconductor device; growing an epi layer over the substrate; forming a doped layer below the epi layer; depositing a first oxide layer on the epi layer; applying a dielectric material on the first oxide layer; and depositing a lithography stack on the dielectric material. One intermediate semiconductor device includes, for instance: a substrate with at least one n-well region and at least one p-well region; a doped layer over the substrate; an epi layer over the doped layer; a first oxide layer over the epi layer; a dielectric layer over the first oxide layer; and a lithography stack over the dielectric layer.
Abstract:
Devices and methods for forming semiconductor devices with fins at tight fin pitches are provided. One method includes, for instance: obtaining an intermediate semiconductor device; growing an epi layer over the substrate; forming a doped layer below the epi layer; depositing a first oxide layer on the epi layer; applying a dielectric material on the first oxide layer; and depositing a lithography stack on the dielectric material. One intermediate semiconductor device includes, for instance: a substrate with at least one n-well region and at least one p-well region; a doped layer over the substrate; an epi layer over the doped layer; a first oxide layer over the epi layer; a dielectric layer over the first oxide layer; and a lithography stack over the dielectric layer.
Abstract:
A lithographic stack over a raised structure (e.g., fin) of a non-planar semiconductor structure, such as a FinFET, includes a bottom layer of spin-on amorphous carbon or spin-on organic planarizing material, a hard mask layer of a nitride and/or an oxide on the spin-on layer, a layer of a developable bottom anti-reflective coating (dBARC) on the hard mask layer, and a top layer of photoresist. The stack is etched to expose and recess the raised structure, and epitaxial structure(s) are grown on the recess.
Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
Abstract:
A non-planar semiconductor structure includes raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon naturally growing into a diamond shape. The surface area of the epitaxial structure may be increased by removing portion(s) thereof. The removal may create a multi-head (e.g., dual-head) epitaxial structure, together with the neck of the raised structure resembling a Y-shape. Raised structures that are not intended to include an epitaxial structure will be masked during epitaxial structure creation and modification. In addition, in order to have a uniform height, the filler material surrounding the raised structures is recessed around those to receive epitaxial structures.
Abstract:
Methods for forming FinFET source/drain regions with a single reticle and the resulting devices are disclosed. Embodiments may include forming a first fin and a second fin above a substrate, forming a gate crossing over the first fin and the second fin, removing portions of the first fin and the second fin on both sides the gate, forming silicon phosphorous tops on the first fin and the second fin in place of the portions, removing the silicon phosphorous tops on the first fin, and forming silicon germanium tops on the first fin in place of the silicon phosphorous tops.
Abstract:
Circuit structures and methods of fabrication are provided with enhanced electrical connection between, for instance, a first metal level and a contact surface of a conductive structure. Enhanced electrical connection is achieved using a plurality of contact vias which are differently-sized, and disposed over and electrically coupled to the contact surface. The differently-sized contact vias include at least one center region contact via disposed over a center region of the contact surface, and at least one peripheral region contact via disposed over a peripheral region of the contact surface, where the at least one center region contact via is larger than the at least one peripheral region contact via.
Abstract:
Fabricating of one or more semiconductor devices with critical gate dimension control is facilitated by: providing a multilayer stack structure over a substrate; etching through the multilayer stack structure, with critical gate dimension control, to define multiple gate lines; providing a protective layer over the multiple gate lines; and patterning and cutting one or more gate lines of the multiple gate lines to facilitate defining multiple gate structures of the one or more semiconductor devices. Etching through the multilayer stack structure is facilitated by lithographically patterning the multilayer stack structure, and critical dimension feedback control is provided to at least one of the lithographically patterning or the etching through the multilayer stack structure.
Abstract:
A non-planar semiconductor structure includes mixed n-and-p type raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon and silicon germanium, naturally growing into a diamond shape. The surface area of the epitaxial structures is increased by removing portion(s) thereof, masking each type as the other type is grown and then subsequently modified by the removal. The removal may create multi-head (e.g., dual-head) epitaxial structures, together with the neck of the respective raised structure resembling a Y-shape.
Abstract:
A non-planar semiconductor structure includes mixed n-and-p type raised semiconductor structures, e.g., fins, having epitaxial structures grown on top surfaces thereof, for example, epitaxial silicon and silicon germanium, naturally growing into a diamond shape. The surface area of the epitaxial structures is increased by removing portion(s) thereof, masking each type as the other type is grown and then subsequently modified by the removal. The removal may create multi-head (e.g., dual-head) epitaxial structures, together with the neck of the respective raised structure resembling a Y-shape.