Abstract:
Circuit structures and methods of fabrication are provided with enhanced electrical connection between, for instance, a first metal level and a contact surface of a conductive structure. Enhanced electrical connection is achieved using a plurality of contact vias which are differently-sized, and disposed over and electrically coupled to the contact surface. The differently-sized contact vias include at least one center region contact via disposed over a center region of the contact surface, and at least one peripheral region contact via disposed over a peripheral region of the contact surface, where the at least one center region contact via is larger than the at least one peripheral region contact via.
Abstract:
A mask is disclosed which includes a plurality of first phase shift regions disposed on a first side of the mask, and a plurality of second phase shift regions disposed on a second side of the mask. The first phase shift regions and second phase shift regions may be alternating phase shift regions in which phase shift of the first phase shift regions is out of phase, for instance by 180 degrees, from phase shift of the second phase shift regions. A method for forming the mask, and a semiconductor device fabrication method using the mask is also disclosed.
Abstract:
Methods for identification and partial re-routing of selected areas (e.g., including critical areas) in a layout of an IC design and the resulting device are disclosed. Embodiments include comparing design data of an IC device against criteria of manufacturing processes to manufacture the IC device; identifying in the design data a layout area based, at least in part, on proximity of metal segments, interconnecting segments, or a combination thereof in the layout area; performing partial re-routing in the layout area to substantially meet the criteria, wherein at least one interconnecting element is shifted or extended; and integrating the partial re-routing into the design data for use in the manufacturing processes.
Abstract:
A metrology pattern layout for a circuit structure is provided, the metrology pattern layout including a plurality of quadrants, in which quadrants a first wafer measurement pattern, a second wafer measurement pattern, a reticle registration pattern, and a reticle measurement pattern may be arranged to facilitate correlation of reticle metrology data with wafer metrology data. The reticle registration pattern may further include one or more outermost structural elements designed to protect other structural elements within the reticle measurement pattern from being modified in an optical proximity correction process. A method of optical proximity correction process is provided, in which a reticle measurement pattern may be obtained and classified to add or modify a rule set of the optical proximity correction process.
Abstract:
Fabrication of through-substrate via (TSV) structures is facilitated by: forming at least one stress buffer within a substrate; forming a through-substrate via contact within the substrate, wherein the through-substrate via structure and the stress buffer(s) are disposed adjacent to or in contact with each other; and where the stress buffer(s) includes a configuration or is disposed at a location relative to the through-substrate via conductor, at least in part, according to whether the TSV structure is an isolated TSV structure, a chained TSV structure, or an arrayed TSV structure, to customize stress alleviation by the stress buffer(s) about the through-substrate via conductor based, at least in part, on the type of TSV structure.
Abstract:
Methods for identification and partial re-routing of selected areas (e.g., including critical areas) in a layout of an IC design and the resulting device are disclosed. Embodiments include comparing design data of an IC device against criteria of manufacturing processes to manufacture the IC device; identifying in the design data a layout area based, at least in part, on proximity of metal segments, interconnecting segments, or a combination thereof in the layout area; performing partial re-routing in the layout area to substantially meet the criteria, wherein at least one interconnecting element is shifted or extended; and integrating the partial re-routing into the design data for use in the manufacturing processes.
Abstract:
A metrology pattern layout for a circuit structure is provided, the metrology pattern layout including a plurality of quadrants, in which quadrants a first wafer measurement pattern, a second wafer measurement pattern, a reticle registration pattern, and a reticle measurement pattern may be arranged to facilitate correlation of reticle metrology data with wafer metrology data. The reticle registration pattern may further include one or more outermost structural elements designed to protect other structural elements within the reticle measurement pattern from being modified in an optical proximity correction process. A method of optical proximity correction process is provided, in which a reticle measurement pattern may be obtained and classified to add or modify a rule set of the optical proximity correction process.
Abstract:
A method of forming dummy structures and an overlay mark protection zone over an active layer zone based on the shape of an overlay mark and the resulting device are provided. Embodiments include determining a size and a shape of an overlay mark; determining a size and a shape of an overlay mark protection zone based on the shape of the overlay mark; determining a shape of a plurality of dummy structures based on the shape of the overlay mark; determining a size and a shape of an active layer zone based on the size and the shape of the overlay mark and the plurality of dummy structures; forming the active layer zone in an active layer of a semiconductor substrate; forming the overlay mark and the plurality of dummy structures over the active layer zone in a poly layer of the semiconductor substrate; and planarizing the poly layer.
Abstract:
A mask is disclosed which includes a plurality of first phase shift regions disposed on a first side of the mask, and a plurality of second phase shift regions disposed on a second side of the mask. The first phase shift regions and second phase shift regions may be alternating phase shift regions in which phase shift of the first phase shift regions is out of phase, for instance by 180 degrees, from phase shift of the second phase shift regions. A method for forming the mask, and a semiconductor device fabrication method using the mask is also disclosed.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to gap fill void and connection structures and methods of manufacture. The structure includes: a gate structure comprising source and drain regions; a gate contact in direct contact and overlapping the gate structure; and source and drain contacts directly connecting to the source and drain regions, respectively.