Abstract:
A method for etching FinFET spacers by inserting a Si recess step directly after the traditional spacer ME step and the resulting device are provided. Embodiments include forming a gate on a substrate having a silicon fin, the gate having a nitride cap on an upper surface thereof and an oxide cap on an upper surface of the nitride cap; forming a dielectric layer over the silicon fin and the gate; removing the dielectric layer from an upper surface of the oxide cap and an upper surface of the silicon fin; recessing the silicon fin; and removing the dielectric layer from side surfaces of the silicon fin and the remaining silicon fin.
Abstract:
Gate structures and methods of fabricating gate structures of semiconductor devices are provided. One method includes, for instance: providing a sacrificial layer over a substrate; patterning the sacrificial layer to form a gate opening within the sacrificial layer; providing a gate structure within the gate opening in the sacrificial layer; and removing the sacrificial layer, leaving the gate structure over the substrate. In enhanced aspects, the method includes: forming a reverse sidewall-spacer within the gate opening within the sacrificial layer, and after providing the gate structure, recessing the gate structure within the gate opening, and providing a gate cap within the gate recess in the gate structure.
Abstract:
Methods of facilitating isolation region uniformity include: patterning a semiconductor substrate to form at least one isolation opening within the semiconductor substrate, the patterning comprising leaving, at least in part, a protective hard mask above a portion of the semiconductor substrate; providing an insulating material within and over the at least one isolation opening, and planarizing the insulating material to facilitate fabricating an isolation region within the semiconductor substrate; stopping the planarizing on the protective hard mask and exposing at least a portion of the protective hard mask above the portion of the semiconductor substrate; and non-selectively removing a remaining portion of the insulating material over the at least one isolation opening and the exposed protective hard mask above the portion of the semiconductor substrate while leaving the insulating material within the at least one isolation opening and exposing upper surfaces of the semiconductor substrate, to facilitate isolation region uniformity.
Abstract:
A method of forming SSRW FETs with controlled step height between a field oxide and epitaxially grown silicon and the resulting devices are provided. Embodiments include providing a SiN layer on a substrate, forming first, second, and third spaced STI regions of field oxide through the SiN layer and into the substrate, removing a top portion of the field oxide for each STI region by a controlled deglaze, removing the SiN layer, forming an n-type region in the substrate between the first and second STI regions and a p-type region in the substrate between the second and third STI regions, and epitaxially growing a Si based layer on the substrate over the n-type and p-type regions.
Abstract:
Fin-type transistor fabrication methods and structures are provided having extended embedded stress elements. The methods include, for example: providing a gate structure extending over a fin extending above a substrate; using isotropic etching and anisotropic etching to form an extended cavity within the fin, where the extended cavity in part undercuts the gate structure, and where the using of the isotropic etching and the anisotropic etching deepens the extended cavity into the fin below the undercut gate structure; and forming an embedded stress element at least partially within the extended cavity, including below the gate structure.
Abstract:
A methodology enabling the formation of steep channel profiles for devices, such as SSRW FETs, having a resultant channel profiles that enables suppression of threshold voltage variation and the resulting device are disclosed. Embodiments include providing STI regions in a silicon wafer; performing a deep well implantation of a dopant into the silicon wafer between STI regions; forming a recess in the doped silicon wafer between the STI regions; performing a shallow well implantation of the dopant into the silicon wafer in the recess; and forming Si:C on the doped silicon wafer in the recess.