Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to selective shallow trench isolation (STI) fill material for stress engineering in semiconductor structures and methods of manufacture. The structure includes a single diffusion break (SDB) region having at least one shallow trench isolation (STI) region with a stress fill material within a recess of the at least one STI region. The stress fill material imparts a stress on a gate structure adjacent to the at least one STI region.
Abstract:
A method of manufacturing a FinFET structure involves forming gate cuts within a sacrificial gate layer prior to patterning and etching the sacrificial gate layer to form longitudinal sacrificial gate structures. By forming transverse cuts in the sacrificial gate layer before defining the sacrificial gate structures longitudinally, dimensional precision of the gate cuts at lower critical dimensions can be improved.
Abstract:
A method can include performing an etching process to define a fin trench having a first depth, the first depth being less that a target height of fin. A method can also include forming a layer to protect sidewalls defining the fin trench. A method can also include performing a second etching process to increase a depth of fin trench.
Abstract:
There is set forth herein in one embodiment a semiconductor structure having a first region and a second region. The first region can include fins of a first fin height and the second region can include fins of a second fin height.
Abstract:
Method for forming FinFET source/drain regions with reduced field oxide loss and the resulting devices are disclosed. Embodiments include forming silicon fins separated by a field oxide on a silicon substrate; recessing the field oxide to reveal an upper portion of the silicon fins; forming a spacer layer conformally over the upper portion of the fins and over the field oxide; filling spaces between the fins with a material having high selectivity with the spacer layer; recessing the material; removing the spacer layer above an upper surface of the material; removing the material; recessing the upper portion of the fins; and epitaxially growing source/drain regions on the recessed fins.
Abstract:
A methodology for forming a fin field effect transistor (FinFET) includes the co-integration of various isolation structures, including gate cut and shallow diffusion break isolation structures that are formed with common masking and etching steps. Following an additional patterning step to provide segmentation for source/drain conductive contacts, a single deposition step is used to form an isolation dielectric layer within each of gate cut openings, shallow diffusion break openings and cavities over shallow trench isolation between device active areas.
Abstract:
Thermal oxidation treatment methods and processes used during fabrication of semiconductor devices are provided. One method includes, for instance: obtaining a device with at least one cavity etched into the device; performing a thermal oxidation treatment to the at least one cavity; and cleaning the at least one cavity. One process includes, for instance: providing a semiconductor device with a substrate, at least one layer over the substrate and at least one fin; forming at least one gate over the fin; doping at least one region below the fin; applying a spacer layer over the device; etching the spacer layer to expose at least a portion of the gate material; etching a cavity into the at least one fin; etching a shaped opening into the cavity; performing thermal oxidation processing on the at least one cavity; and growing at least one epitaxial layer on an interior surface of the cavity.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to capping structures and methods of manufacture. The structure includes: a plurality of gate structures in a first location with a first density; a plurality of gate structures in a second location with a second density different than the first density; and a T-shaped capping structure protecting the plurality of gate structures in the first location and in the second location.
Abstract:
Methods of reducing the SC GH on a FinFET device while protecting the LC devices and the resulting devices are provided. Embodiments include forming an ILD over a substrate of a FinFET device, the ILD having a SC region and a LC region; forming a SC gate and a LC gate within the SC and LC regions, respectively, an upper surface of the SC and LC gates being substantially coplanar with an upper surface of the ILD; forming a lithography stack over the LC region; recessing the SC gate; stripping the lithography stack; forming a SiN cap layer over the SC and LC regions; forming a TEOS layer over the SiN cap layer; and planarizing the TEOS layer.
Abstract:
A lithographic stack over a raised structure (e.g., fin) of a non-planar semiconductor structure, such as a FinFET, includes a bottom layer of spin-on amorphous carbon or spin-on organic planarizing material, a hard mask layer of a nitride and/or an oxide on the spin-on layer, a layer of a developable bottom anti-reflective coating (dBARC) on the hard mask layer, and a top layer of photoresist. The stack is etched to expose and recess the raised structure, and epitaxial structure(s) are grown on the recess.