Forming two portion spacer after metal gate and contact formation, and related IC structure

    公开(公告)号:US11482456B2

    公开(公告)日:2022-10-25

    申请号:US16360183

    申请日:2019-03-21

    Abstract: A method of forming an IC structure includes providing a metal gate structure, a spacer adjacent the metal gate structure and a contact to each of a pair of source/drain regions adjacent sides of the spacer. The spacer includes a first dielectric having a first dielectric constant. The metal gate structure is recessed, and the spacer is recessed to have an upper surface of the first dielectric below an upper surface of the metal gate structure, leaving a lower spacer portion. An upper spacer portion of a second dielectric having a dielectric constant lower than the first dielectric is formed over the lower spacer portion. A gate cap is formed over the metal gate structure and the upper spacer portion. The second dielectric can include, for example, an oxide or a gas. The method may reduce effective capacitance and gate height loss, and improve gate-to-contact short margin.

    Middle of line gate structures
    3.
    发明授权

    公开(公告)号:US11171237B2

    公开(公告)日:2021-11-09

    申请号:US16386902

    申请日:2019-04-17

    Abstract: The present disclosure generally relates to semiconductor structures and, more particularly, to middle of line gate structures and methods of manufacture. The structure includes: a plurality of adjacent gate structures; a bridged gate structure composed of a plurality of the adjacent gate structures; source and drain regions adjacent to the bridged gate structure and comprising source and drain metallization features; and contacts to the bridged gate structure and the source and drain metallization features.

    Gate cut isolation including air gap, integrated circuit including same and related method

    公开(公告)号:US10971583B2

    公开(公告)日:2021-04-06

    申请号:US16188408

    申请日:2018-11-13

    Abstract: A gate cut isolation including an air gap and an IC including the same are disclosed. A method of forming the gate cut isolation may include forming an opening in a dummy gate that extends over a plurality of spaced active regions, the opening positioned between and spaced from a pair of active regions. The opening is filled with a fill material, and the dummy gate is removed. A metal gate is formed in a space vacated by the dummy gate on each side of the fill material, and the fill material is removed to form a preliminary gate cut opening. A liner is deposited in the preliminary gate cut opening, creating a gate cut isolation opening, which is then sealed by depositing a sealing layer. The sealing layer closes an upper end of the gate cut isolation opening and forms the gate cut isolation including an air gap.

    Asymmetric gate cut isolation for SRAM

    公开(公告)号:US10950610B2

    公开(公告)日:2021-03-16

    申请号:US16515913

    申请日:2019-07-18

    Abstract: Methods of forming a gate cut isolation for an SRAM include forming a first and second active nanostructures adjacent to each other and separated by a space; forming a sacrificial liner over at least a side of the first active nanostructure facing the space, causing a first distance between a remaining portion of the space and the first active nanostructure to be greater than a second distance between the remaining portion of the space and the second active nanostructure. A gate cut isolation is formed in the remaining portion of the space such that it is closer to the second active nanostructure than the first active nanostructure. The sacrificial liner is removed, and gates formed over the active nanostructures with the gates separated from each other by the gate cut isolation. An SRAM including the gate cut isolation and an IC structure including the SRAM are also included.

    Transistor comprising an air gap positioned adjacent a gate electrode

    公开(公告)号:US11456382B2

    公开(公告)日:2022-09-27

    申请号:US16664056

    申请日:2019-10-25

    Abstract: A transistor device disclosed herein includes, among other things, a gate electrode positioned above a semiconductor material region, a sidewall spacer positioned adjacent the gate electrode, a gate insulation layer having a first portion positioned between the gate electrode and the semiconductor material region and a second portion positioned between a lower portion of the sidewall spacer and the gate electrode along a portion of a sidewall of the gate electrode, an air gap cavity located between the sidewall spacer and the gate electrode and above the second portion of the gate insulation layer, and a gate cap layer positioned above the gate electrode, wherein the gate cap layer seals an upper end of the air gap cavity so as to define an air gap positioned adjacent the gate electrode.

    Single diffusion cut for gate structures

    公开(公告)号:US11127623B2

    公开(公告)日:2021-09-21

    申请号:US16213189

    申请日:2018-12-07

    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to single diffusion cut for gate structures and methods of manufacture. The structure includes a single diffusion break extending into a substrate between diffusion regions of adjacent gate structures, the single diffusion break filled with an insulator material and further comprising an undercut region lined with a liner material which is between the insulator material and the diffusion regions.

    Mask-free methods of forming structures in a semiconductor device

    公开(公告)号:US11004953B2

    公开(公告)日:2021-05-11

    申请号:US16454016

    申请日:2019-06-26

    Abstract: A method is provided for fabricating a semiconductor device structure with a short channel and long channel component having different gate dielectric layers without using lithography processes or masks. The method includes forming first and second openings having sidewalls and bottom surfaces in a dielectric layer, the first opening being narrower than the second opening. A first material layer is formed in the first and second openings. A protective layer is formed over the first material layer, wherein the protective layer covers the sidewalls and the bottom surface of the second opening. A block layer is formed to fill the second opening and cover the protective layer therein. The method further includes removing side portions of the protective layer to expose upper portions of the first material layer in the second opening. The block layer is removed from the second opening to expose the protective layer remaining in the second opening. A second material layer is formed over the first material layer on the exposed upper portions of the first material layer in the second opening. An intermix layer is formed in the second opening using the first and second material layers. The protective layer from the second opening is removed to expose the first material layer.

Patent Agency Ranking