Abstract:
Methods and control systems are provided for automatically controlling operation of a vehicle. In one embodiment, the control system includes an exterior sensor for sensing the environment outside the vehicle. A processor is in communication with the exterior sensor and configured to calculate a driving plan of the vehicle based at least partially on the sensed environment outside the vehicle. The processor is also configured to calculate a confidence level of the driving plan of the vehicle based at least partially on the sensed environment around the vehicle. The control system also includes a display in communication with the processor and configured to receive data from the processor and display a representation of at least one of the driving plan and the confidence level.
Abstract:
A method of alerting a driver of a vehicle is provided. The method includes: receiving conditions data from one or more collision avoidance systems; determining an alert mode based on the conditions data; and selectively coordinating an alert pattern for more than one of haptic alert devices, visual alert devices, and auditory alert devices based on the alert mode.
Abstract:
A method of alerting a driver of a vehicle is provided. The method includes: receiving conditions data from one or more collision avoidance systems; determining an alert mode based on the conditions data, wherein the alert mode indicates at least two of alert conditions, vehicle conditions, and driving scenarios; and at least one of arbitrating, synchronizing, and combining at least two alert patterns associated with the at least two of the alert conditions, the vehicle conditions, and the driving scenarios and associated with one or more alert devices.
Abstract:
Methods and systems for controlling a driving feature for an automated driving system are provided. In one embodiment, a method includes: receiving a first sensor signal from a first sensor; receiving a second sensor signal from a second sensor; selectively determining a driver intent based on at least one of the first sensor signal and the second sensor signal; and controlling the driving feature based on the driver intent.
Abstract:
Methods and vehicles are provided for providing haptic feedback to a vehicle occupant. In one embodiment, the method includes determining at least one of interior conditions and exterior conditions of a vehicle. The vehicle includes a plurality of haptic actuators disposed in a seat. The method further includes calculating at least one of a pulse width modulation (PWM) pattern and an on/off compensation pattern based on the determined interior conditions and exterior conditions. The method further includes generating a signal with active periods that include at least one of the calculated patterns to command the plurality of haptic actuators to produce haptic pulses.
Abstract:
A method of alerting a driver of a vehicle is provided. The method includes: receiving alert settings configured by a user through a user interface; and selectively generating an alert pattern for at least one of a haptic alert device, an auditory alert device, and a visual alert device based on the alert settings.
Abstract:
Methods and vehicles are provided for providing haptic feedback to a vehicle occupant. In one embodiment, the method includes selecting a pattern of active haptic periods during which a controller will command a plurality of haptic actuators disposed in a seat of a vehicle to generate haptic pulses, determining a desired voltage of a signal supplied to the haptic actuators that indicates the active haptic periods to generate a desired intensity of haptic pulses, determining an actual voltage of an energy storage device of the vehicle, calculating a pulse width modulation (PWM) pattern that simulates the desired voltage when applied to the signal using the actual voltage, and generating a signal that indicates the active haptic periods based on the PWM pattern to command the haptic actuators to generate the desired intensity of haptic pulses.
Abstract:
A method and system may prevent misuse of an autonomous driving system by providing at least one prompt at least one prompt for a driver of a vehicle. A sensor may whether the driver responds to the prompt. A processor may determine whether the driver exercises sufficient supervisory control of the vehicle, based on whether the driver responds to the prompt. The processor may disengage the autonomous driving system if the driver fails to exercise sufficient supervisory control of the vehicle. The processor may further reduce the vehicle's speed if the driver continues to misuse the autonomous driving system.
Abstract:
Methods and systems are provided for responding to drowsiness of a driver. The method and system comprise detecting by a module the drowsiness of the driver based on a detected level exceeding a threshold associated with at least one of a set of conditions of the driver which indicate the drowsiness of the driver. The conditions of driver drowsiness include driver performance, vigilance, judgment and alertness. A response to the conditions which have been detected is provided by assists to the driver to at least facilitate reducing the detected level below the threshold associated with the conditions and any subsequent drowsiness of the driver.
Abstract:
Methods and systems are provided for facilitating communications between a vehicle and a trailer. In accordance with one embodiment, a system includes a memory, and a processor, and a transceiver. The memory is disposed onboard a trailer that is configured to be connected to a vehicle. The memory stores trailer-specific information pertaining to the trailer. The processor is disposed onboard the trailer, and is coupled to the memory. The processor is configured to provide instructions to automatically transmit the trailer-specific information to the vehicle, for customization of vehicle operation based on the trailer-specific information. The transceiver is coupled to the processor. The transceiver is configured to automatically transmit, based on the instructions provided by the processor, the trailer-specific information to the vehicle, for customization of vehicle operation based on the trailer-specific information for when the trailer is connected to the vehicle.