Abstract:
A probe card assembly can include a probe head assembly having probes for contacting an electronic device to be tested. The probe head assembly can be electrically connected to a wiring substrate and mechanically attached to a stiffener plate. The wiring substrate can provide electrical connections to a testing apparatus, and the stiffener plate can provide structure for attaching the probe card assembly to the testing apparatus. The stiffener plate can have a greater mechanical strength than the wiring substrate and can be less susceptible to thermally induced movement than the wiring substrate. The wiring substrate may be attached to the stiffener plate at a central location of the wiring substrate. Space may be provided at other locations where the wiring substrate is attached to the stiffener plate so that the wiring substrate can expand and contract with respect to the stiffener plate.
Abstract:
An apparatus for determining a planarity of a first structure configured to hold a probing device to the planarity of a second structure configured to hold a device to be probed is disclosed. In one example of the apparatus, a plurality of moveable push rods are disposed in a substrate, which is attached to the first structure. In initial non-displaced positions, the push rods correspond to a planarity of the first structure. The second structure is then brought into contact with the push rods, displacing the push rods into second positions that correspond to a planarity of the second structure. In another example of the apparatus, beams of light are reflected off of reflectors disposed on the first structure and onto sensors disposed on the second structure. The locations of the reflected beams on the sensors are noted and used to determine the planarity of the first structure with respect to the second structure.
Abstract:
Apparatuses and methods for cleaning test probes used in a semiconductor testing machine of the type having a plurality of test probes configured to contact the surface of a semiconductor wafer to test one or more dies formed thereon. In one embodiment, the apparatus includes a roller-support arm and a cylindrical roller supported by the roller-support arm. The roller has an outer surface comprising a sticky material. Debris on the probes will adhere to the sticky material as roller is rolled across tips of the probes. The probes are thereby cleaned.
Abstract:
An elongate, columnar micro-mechanical structure disposed along a central longitudinal axis; the structure is made up of laminated structural layers, each comprised of a structural material. The layers define a substantially rigid base portion at a proximal end of the structure, a resilient intermediate portion extending from the base portion along the central axis, and a contact tip extending from the resilient portion at a distal end of the structure. The resilient portion of the contact structure is comprised of resilient arms defined in the layers. Opposite ends of the resilient arms may be angularly offset with respect to one another around the central axis. Accordingly, when the contact structure is compressed in an axial direction, the contact tip will rotate around the central axis, while the base remains fixed, providing beneficial wiping action to the contact tip.
Abstract:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
Abstract:
Spring contact elements are fabricated by depositing at least one layer of metallic material into openings defined on a sacrificial substrate. The openings may be within the surface of the substrate, or in one or more layers deposited on the surface of the sacrificial substrate. Each spring contact element has a base end portion, a contact end portion, and a central body portion. The contact end portion is offset in the z-axis (at a different height) than the central body portion. The base end portion is preferably offset in an opposite direction along the z-axis from the central body portion. In this manner, a plurality of spring contact elements are fabricated in a prescribed spatial relationship with one another on the sacrificial substrate. The spring contact elements are suitably mounted by their base end portions to corresponding terminals on an electronic component, such as a space transformer or a semiconductor device, whereupon the sacrificial substrate is removed so that the contact ends of the spring contact elements extend above the surface of the electronic component. In an exemplary use, the spring contact elements are thereby disposed on a space transformer component of a probe card assembly so that their contact ends effect pressure connections to corresponding terminals on another electronic component, for the purpose of probing the electronic component.
Abstract:
A planarizer for a probe card assembly. A planarizer includes a first control member extending from a substrate in a probe card assembly. The first control member extends through at least one substrate in the probe card assembly and is accessible from an exposed side of an exterior substrate in the probe card assembly. Actuating the first control member causes a deflection of the substrate connected to the first control member.
Abstract:
The present invention discloses a method and system compensating for thermally induced motion of probe cards used in testing die on a wafer. A probe card incorporating temperature control devices to maintain a uniform temperature throughout the thickness of the probe card is disclosed. A probe card incorporating bi-material stiffening elements which respond to changes in temperature in such a way as to counteract thermally induced motion of the probe card is disclosed including rolling elements, slots and lubrication. Various means for allowing radial expansion of a probe card to prevent thermally induced motion of the probe card are also disclosed. A method for detecting thermally induced movement of the probe card and moving the wafer to compensate is also disclosed.
Abstract:
A method of designing and manufacturing a probe card assembly includes prefabricating one or more elements of the probe card assembly to one or more predefined designs. Thereafter, design data regarding a newly designed semiconductor device is received along with data describing the tester and testing algorithms to be used to test the semiconductor device. Using the received data, one or more of the prefabricated elements is selected. Again using the received data, one or more of the selected prefabricated elements is customized. The probe card assembly is then built using the selected and customized elements.
Abstract:
A method of forming a probe array includes forming a layer of tip material over a block of probe material. A first electron discharge machine (EDM) electrode is positioned over the layer of tip material, the EDM electrode having a plurality of openings corresponding to a plurality of probes to be formed. Excess material from the layer of tip material and the block of probe material is removed to form the plurality of probes. A substrate having a plurality of through holes corresponding to the plurality of probes is positioned so that the probes penetrate the plurality of through holes. The substrate is bonded to the plurality of probes. Excess probe material is removed so as to planarize the substrate.