摘要:
According to one embodiment, there is provided a high voltage isolation dual capacitor communication system comprising communication drive and sense electrodes and corresponding first and second capacitors that are formed in two separate devices. The two devices are electrically connected in series to provide a single galvanicly-isolated communication system that exhibits high breakdown voltage performance in combination with good signal coupling. The system effects communications between drive and receive circuits through the first and second capacitors, and in a preferred embodiment is capable of effecting relatively high-speed digital communications. The system may be formed in a small package using, by way of example, CMOS or other semiconductor fabrication and packaging processes.
摘要:
According to one embodiment, there is provided a high voltage isolation dual capacitor communication system comprising communication drive and sense electrodes and corresponding first and second capacitors that are formed in two separate devices. The two devices are electrically connected in series to provide a single galvanically-isolated communication system that exhibits high breakdown voltage performance in combination with good signal coupling. The system effects communications between drive and receive circuits through the first and second capacitors, and in a preferred embodiment is capable of effecting relatively high-speed digital communications. The system may be formed in a small package using, by way of example, CMOS or other semiconductor fabrication and packaging processes.
摘要:
According to one embodiment, there is provided a semiconductor digital communication device comprising communication drive and sense electrodes formed in a single plane, where the electrodes have relatively high sidewalls. The relatively high sidewalls permit low electrical field densities to be obtained in the sense and drive electrodes during operation, and further permit very high breakdown voltages to be obtained between the electrodes, and between the drive electrode and an underlying ground plane substrate. The device effects communications between drive and receive circuits through the drive and sense electrodes by capacitive means, and in a preferred embodiment is capable of effecting relatively high-speed digital communications. The device may be formed in a small package using, by way of example, CMOS or other semiconductor fabrication and packaging processes.
摘要:
According to one embodiment, there is provided a method of reducing the amount of power consumed by a galvanic isolator. A transmitter transmits a wake-up signal to a receiver located across an isolation medium when the transmitter is ready or preparing to transmit data or power signals to a receiver, which is operably connected to a sensing circuit. The sensing circuit receives the wake-up signal through the isolation medium, which may be operably connected to and powered substantially continuously or intermittently by a first power source. In response to the sensing circuit receiving the wake-up signal, the receiver is powered up from a sleep mode to an operating mode. After a period of time tRDY has passed since the wake-up signal was transmitted, a signature pattern is transmitted from the transmitter to the sensing circuit through the isolation medium. Next, the sensing circuit or the receiver verifies the validity of the signature pattern. If the signature pattern is determined at to be valid, the receiver is enabled to receive the data or power signals from the transmitter. The transmitter then transmits the data or power signals from the transmitter through the isolation medium to the receiver.
摘要:
According to one embodiment, there is provided a method of reducing the amount of power consumed by a galvanic isolator. A transmitter transmits a wake-up signal to a receiver located across an isolation medium when the transmitter is ready or preparing to transmit data or power signals to a receiver, which is operably connected to a sensing circuit. The sensing circuit receives the wake-up signal through the isolation medium, which may be operably connected to and powered substantially continuously or intermittently by a first power source. In response to the sensing circuit receiving the wake-up signal, the receiver is powered up from a sleep mode to an operating mode. After a period of time tRDY has passed since the wake-up signal was transmitted, a signature pattern is transmitted from the transmitter to the sensing circuit through the isolation medium. Next, the sensing circuit or the receiver verifies the validity of the signature pattern. If the signature pattern is determined at to be valid, the receiver is enabled to receive the data or power signals from the transmitter. The transmitter then transmits the data or power signals from the transmitter through the isolation medium to the receiver.
摘要:
According to one embodiment, there is provided a high voltage drive circuit comprising drive and sense electrodes formed substantially in a single plane. The device effects signal transfer between drive and receive circuits through the drive and sense electrodes by capacitive means, and permits high voltage devices, such as IGBTs, to be driven thereby without the use of high voltage transistors, thereby eliminating the need to use expensive fabrication processes such as SOI when manufacturing high voltage gate drive circuits and ICs. The device may be formed in a small package using, by way of example, using CMOS or other conventional low-cost semiconductor fabrication and packaging processes.
摘要:
According to one embodiment, there is provided a high voltage drive circuit comprising drive and sense electrodes formed substantially in a single plane. The device effects signal transfer between drive and receive circuits through the drive and sense electrodes by capacitive means, and permits high voltage devices, such as IGBTs, to be driven thereby without the use of high voltage transistors, thereby eliminating the need to use expensive fabrication processes such as SOI when manufacturing high voltage gate drive circuits and ICs. The device may be formed in a small package using, by way of example, using CMOS or other conventional low-cost semiconductor fabrication and packaging processes.
摘要:
Disclosed herein are various embodiments of coil transducers and galvanic isolators configured to provide high voltage isolation and high voltage breakdown performance characteristics in small packages. A coil transducer is provided across which data or power signals may be transmitted and received by primary and secondary coils disposed on opposing sides thereof without high voltage breakdowns occurring therebetween. At least portions of the coil transducer are formed of an electrically insulating, non-metallic, non-semiconductor, low dielectric loss material. Circuits are disclosed herein that permit high speed data signals to be transmitted through the coil transducer and faithfully and accurately reconstructed on the opposing side thereof. The coil transducer may be formed in a small package using, by way of example, printed circuit board, CMOS and other fabrication and packaging processes.
摘要:
Various embodiments of an optical proximity sensor and corresponding circuits and methods for measuring small AC signal currents arising from the detection of pulsed AC light signals emitted by a light emitter and reflected from an object to detected in the presence of larger ambient light DC current signals are disclosed. Circuits and corresponding methods are described that improve the dynamic range, sensitivity and detection range of an optical proximity sensor by cancelling the contributions of DC current signals arising from ambient light signals that otherwise would dominate the detected small AC signal currents. The DC signal cancellation occurs in a differential amplifier circuit before small AC signal currents are provided to an analog-to-digital converter. The circuits and methods may be implemented using conventional CMOS design and manufacturing techniques and processes.
摘要:
Various embodiments of an optical proximity sensor and corresponding circuits and methods for measuring small AC signal currents arising from the detection of pulsed AC light signals emitted by a light emitter and reflected from an object to detected in the presence of larger ambient light DC current signals are disclosed. Circuits and corresponding methods are described that improve the dynamic range, sensitivity and detection range of an optical proximity sensor by cancelling the contributions of DC current signals arising from ambient light signals that otherwise would dominate the detected small AC signal currents. The DC signal cancellation occurs in a differential amplifier circuit before small AC signal currents are provided to an analog-to-digital converter The circuits and methods may be implemented using conventional CMOS design and manufacturing techniques and processes.