摘要:
According to one exemplary embodiment, a method for forming a field-effect transistor on a substrate comprises a step of forming a high-k dielectric layer over the substrate. The high-k dielectric layer may be, for example, hafnium oxide or zirconium oxide. The method further comprises forming a first polysilicon layer over the high-k dielectric layer, where the first polysilicon layer is formed by utilizing a precursor does not comprise hydrogen. The first polysilicon layer can have a thickness of between approximately 50.0 Angstroms and approximately 200.0 Angstroms, for example. According to this exemplary embodiment, the method can further comprise forming a second polysilicon layer over the first polysilicon layer. The second polysilicon layer may be formed, for example, by utilizing a precursor that comprises hydrogen, where the first polysilicon layer prevents the hydrogen from interacting with the high-k dielectric layer.
摘要:
According to one exemplary embodiment, a method for integrating first and second metal layers on a substrate to form a dual metal NMOS gate and PMOS gate comprises depositing a dielectric layer over an NMOS region and a PMOS region of the substrate. The method further comprises depositing the first metal layer over dielectric layer. The method further comprises depositing the second metal layer over the first metal layer. The method further comprises implanting nitrogen in the NMOS region of substrate and converting a first portion of the first metal layer into a metal oxide layer and converting a second portion of the first metal layer into metal nitride layer. The method further comprises forming the NMOS gate and the PMOS gate, where the NMOS gate comprises a segment of metal nitride layer and the PMOS gate comprises a segment of the metal oxide layer.
摘要:
According to one exemplary embodiment, a method for integrating first and second metal layers on a substrate to form a dual metal NMOS gate and PMOS gate comprises depositing a dielectric layer over an NMOS region and a PMOS region of the substrate. The method further comprises depositing the first metal layer over dielectric layer. The method further comprises depositing the second metal layer over the first metal layer. The method further comprises implanting nitrogen in the NMOS region of substrate and converting a first portion of the first metal layer into a metal oxide layer and converting a second portion of the first metal layer into metal nitride layer. The method further comprises forming the NMOS gate and the PMOS gate, where the NMOS gate comprises a segment of metal nitride layer and the PMOS gate comprises a segment of the metal oxide layer.
摘要:
According to one embodiment, a memory cell structure comprises a semiconductor substrate, a first silicon oxide layer situated over the semiconductor substrate, a charge storing layer situated over the first silicon oxide layer, a second silicon oxide layer situated over the charge storing layer, and a gate layer situated over the second silicon oxide layer. In the exemplary embodiment, the charge storing layer comprises silicon nitride having reduced hydrogen content, e.g., in the range of about 0 to 0.5 atomic percent. As a result, the reduced hydrogen content reduces the charge loss in the charge storing layer. The reduced charge loss in the charge storing layer has the benefit of reducing threshold voltage shifts, programming data loss, and programming capability loss in the memory device, thereby improving memory device performance.
摘要:
According to one exemplary embodiment, a method for forming a field-effect transistor on a substrate comprises a step of forming a buffer layer on the substrate, where the buffer layer comprises ALD silicon dioxide. The buffer layer can be formed by utilizing a silicon tetrachloride precursor in an atomic layer deposition process, for example. The buffer layer comprises substantially no pin-hole defects and may have a thickness, for example, that is less than approximately 5.0 Angstroms. The method further comprises forming a high-k dielectric layer over the buffer layer. The high-k dielectric layer may be, for example, hafnium oxide, zirconium oxide, or aluminum oxide. According to this exemplary embodiment, the method further comprises forming a gate electrode layer over the high-k dielectric layer. The gate electrode layer may be polycrystalline silicon, for example.
摘要:
According to one exemplary embodiment, a method for forming a field effect transistor over a substrate comprises a step of forming an interfacial oxide layer over a channel region of the substrate, where the interfacial oxide layer has a first thickness. The interfacial oxide layer can prevent a high-k element from diffusing into the channel region. The method further comprises forming an oxygen-attracting layer over the interfacial oxide layer, where the oxygen-attracting layer prevents the first thickness of the interfacial oxide layer from increasing. The oxygen-attracting layer is formed by forming a metal layer over the interfacial oxide layer, where the metal layer combines with oxygen to form a silicate. The oxygen-attracting layer may be zirconium silicate or hafnium silicate, for example. The method further comprises forming a high-k dielectric layer over the oxygen-attracting layer. The method further comprises forming a gate electrode layer over the high-k dielectric layer.
摘要:
According to one exemplary embodiment, a method for forming a field effect transistor over a substrate comprises a step of forming an interfacial oxide layer over a channel region of the substrate, where the interfacial oxide layer has a first thickness. The interfacial oxide layer can prevent a high-k element from diffusing into the channel region. The method further comprises forming an oxygen-attracting layer over the interfacial oxide layer, where the oxygen-attracting layer prevents the first thickness of the interfacial oxide layer from increasing. The oxygen-attracting layer is formed by forming a metal layer over the interfacial oxide layer, where the metal layer combines with oxygen to form a silicate. The oxygen-attracting layer may be zirconium silicate or hafnium silicate, for example. The method further comprises forming a high-k dielectric layer over the oxygen-attracting layer. The method further comprises forming a gate electrode layer over the high-k dielectric layer.
摘要:
According to one exemplary embodiment, a method for forming a field-effect transistor on a substrate, where the substrate includes a high-k dielectric layer situated over the substrate and a gate electrode layer situated over the high-k dielectric layer, comprises a step of etching the gate electrode layer and the high-k dielectric layer to form a gate stack, where the gate stack comprises a high-k dielectric segment situated over the substrate and a gate electrode segment situated over the high-k dielectric segment. According to this exemplary embodiment, the method further comprises performing a nitridation process on the gate stack. The nitridation process can be performed by, for example, utilizing a plasma to nitridate sidewalls of the gate stack, where the plasma comprises nitrogen. The nitridation process can cause nitrogen to enter the high-k dielectric segment and form an oxygen diffusion barrier in the high-k dielectric segment, for example.
摘要:
According to one exemplary embodiment, a method for integrating first and second metal layers on a substrate to form a dual metal NMOS gate and PMOS gate comprises depositing a dielectric layer over an NMOS region and a PMOS region of the substrate. The method further comprises depositing the first metal layer over dielectric layer. The method further comprises depositing the second metal layer over the first metal layer. The method further comprises implanting nitrogen in the NMOS region of substrate and converting a first portion of the first metal layer into a metal oxide layer and converting a second portion of the first metal layer into metal nitride layer. The method further comprises forming the NMOS gate and the PMOS gate, where the NMOS gate comprises a segment of metal nitride layer and the PMOS gate comprises a segment of the metal oxide layer.
摘要:
The present invention provides a substrate structure, a semiconductor device, and a manufacturing method thereof. The substrate structure comprises: a semiconductor substrate; and a first isolation region, wherein the first isolation region comprises: a first trench extending through the semiconductor substrate; and a first dielectric layer filling the first trench. Due to the isolation region extending through the substrate, it is possible to make device structures on both surfaces of the substrate, so as to increase the utilization of the substrate and the integration degree of the devices.