摘要:
A process for manufacturing a mask having submillimetric openings on a surface portion of a substrate, characterized in that: a layer known as a mask layer is deposited from a solution of colloidal particles that are stabilized and dispersed in a solvent; and the drying of the mask layer is carried out until a two-dimensional irregular network of substantially straight-edged interstices that gives a mask is obtained, with a random mesh of interstices in at least one direction. Submillimetric grid obtained by the process.
摘要:
The invention relates to a transparent glass substrate, associated with a transparent electro-conductive layer capable of constituting an electrode of a photovoltaic cell and composed of a doped oxide, characterized by the interposition, between the glass substrate and the transparent electroconductive layer, of a mixed layer of one or more first nitride(s) or oxynitride(s), or oxide(s) or oxycarbide(s) having good adhesive properties with glass, and one or more second nitride(s) or oxynitride(s) or oxide(s) or oxycarbide(s) capable of constituting, possibly in the doped state, a transparent electroconductive layer; a method for producing this substrate; a photovoltaic cell, a tempered and/or curved glass, a shaped heating glass, a plasma screen and a flat lamp electrode having this substrate.
摘要:
A method of manufacturing a submillimetric electroconductive grid coated with an overgrid on a substrate includes: the production of a mask having submillimetric openings by the deposition of a solution of colloidal polymeric nanoparticles that are stabilized and dispersed in a solvent, the polymeric particles having a glass transition temperature Tg and the drying of the masking layer at a temperature below the Tg until the mask, with straight edges, is obtained, the formation of the electroconductive grid by a deposition of electroconductive material, referred to as grid material, a heat treatment of the masking layer with the grid material at a temperature greater than or equal to 0.8 times Tg, thus creating a space between the edges of mask zones and the lateral edges of the grid; a deposition of a layer, referred to as an overlayer, made of a material referred to as overlayer material, on the grid and in the space between the edges of mask zones and the lateral edges of the grid; a removal of the masking layer. The invention also relates to the grid thus obtained.
摘要:
The invention relates to a transparent glass substrate, associated with a transparent electro-conductive layer capable of constituting an electrode of a photovoltaic cell and composed of a doped oxide, characterized by the interposition, between the glass substrate and the transparent electroconductive layer, of a mixed layer of one or more first nitride(s) or oxynitride(s), or oxide(s) or oxycarbide(s) having good adhesive properties with glass, and one or more second nitride(s) or oxynitride(s) or oxide(s) or oxycarbide(s) capable of constituting, possibly in the doped state, a transparent electroconductive layer; a method for producing this substrate; a photovoltaic cell, a tempered and/or curved glass, a shaped heating glass, a plasma screen and a flat lamp electrode having this substrate.
摘要:
A method of manufacturing a submillimetric electroconductive grid coated with an overgrid on a substrate includes: the production of a mask having submillimetric openings by the deposition of a solution of colloidal polymeric nanoparticles that are stabilized and dispersed in a solvent, the polymeric particles having a glass transition temperature Tg and the drying of the masking layer at a temperature below the Tg until the mask, with straight edges, is obtained, the formation of the electroconductive grid by a deposition of electroconductive material, referred to as grid material, a heat treatment of the masking layer with the grid material at a temperature greater than or equal to 0.8 times Tg, thus creating a space between the edges of mask zones and the lateral edges of the grid; a deposition of a layer, referred to as an overlayer, made of a material referred to as overlayer material, on the grid and in the space between the edges of mask zones and the lateral edges of the grid; a removal of the masking layer. The invention also relates to the grid thus obtained.
摘要:
The manufacture of a submillimetric grid includes the production of a mask having submillimetric openings, referred to as a network mask, on the main face, from a solution of colloidal nanoparticles with a given glass transition temperature Tg, the drying of the masking layer at a temperature below the Tg; the formation of the electroconductive grid from the network mask including in this order: deposition of at least one electroconductive material, referred to as grid material, having an electricity resistivity of less than 10−5 ohm.cm; removal of the masking layer, revealing the mother grid; optional deposition, by electrodeposition, of an electroconductive material, referred to as overgrid material, the surface subjacent to the mother grid then being dielectric; a detachment, of the mother grid or the overgrid, of a thickness of at least 500 nm. The invention also relates to the detached grid.
摘要:
The subject of the invention is the use of a material composed of a substrate equipped with a coating based on titanium oxide surmounted by a thin hydrophilic layer forming at least one part of the outer surface of said material and that is not composed of titanium oxide, as a material that prevents the deposition of mineral soiling on said outer surface in the absence of water runoff.
摘要:
A carrier substrate, includes a substrate especially having a glass function, transparent at least in the visible and near-infrared ranges and receiving a conducting electrode which is transparent at least in the visible and near-infrared ranges, this electrode carrier substrate being intended to constitute, in combination with functional elements, a solar cell. This carrier substrate is such that: the electrode includes a micromesh made of conducting material having submillimeter-sized openings; and this micromesh is in contact with an at least slightly conducting antireflection coating facing that one of the functional elements with which it is intended to be in contact. An aspect of the present invention also relates to the use of such a carrier substrate as constituent element of a solar cell and to a process for fabricating the substrate.
摘要:
The subject of the invention is the use of a material composed of a substrate equipped with a coating based on titanium oxide surmounted by a thin hydrophilic layer forming at least one part of the outer surface of said material and that is not composed of titanium oxide, as a material that prevents the deposition of mineral soiling on said outer surface in the absence of water runoff.
摘要:
One subject of the invention is a glass substrate coated with a continuous temporary protection film, said film essentially consisting of a stack of discernible colloidal polymer particles. Another subject of the invention is a process for coating a glass substrate with a continuous temporary protection film, in which process an aqueous dispersion of colloidal particles of at least one water-insoluble solid polymer is deposited on at least one surface of said substrate and then the film thus obtained is dried at a temperature above the glass transition temperature of said at least one polymer but not exceeding 50° C.