Abstract:
Aspects of the disclosure relate controlling autonomous vehicles or vehicles having an autonomous driving mode. More particularly, these vehicles may identify and respond to other vehicles engaged in a parallel parking maneuver by receiving sensor data corresponding to objects in an autonomous vehicle's environment and including location information for the objects over time. An object corresponding to another vehicle in a lane in front of the first vehicle may be identified from the sensor data. A pattern of actions of the other vehicle identified form the sensor data is used to determine that the second vehicle is engaged in a parallel parking maneuver based on a pattern of actions exhibited by the other vehicle identified from the sensor data. The determination is then used to control the autonomous vehicle.
Abstract:
Aspects of the disclosure relate to determining whether a feature of map information. For example, data identifying an object detected in a vehicle's environment and including location coordinates is received. This information is used to identify a corresponding feature from pre-stored map information based on a map location of the corresponding feature. The corresponding feature is defined as a curve and associated with a tag identifying a type of the corresponding object. A tolerance constraint is identified based on the tag. The curve is divided into two or more line segments. Each line segment has a first position. The first position of a line segment is changed in order to determine a second position based on the location coordinates and the tolerance constraint. A value is determined based on a comparison of the first position to the second position. This value indicates a likelihood that the corresponding feature has changed.
Abstract:
A vehicle is provided that may combine multiple estimates of an environment into a consolidated estimate. The vehicle may receive first data indicative of the region of interest in an environment from a sensor of the vehicle. The first data may include a first accuracy value and a first estimate of the region of interest. The vehicle may also receive second data indicative of the region of interest in the environment, and the second data may include a second accuracy value and a second estimate of the region of interest. Based on the first data and the second data, the vehicle may combine the first estimate of the region of interest and the second estimate of the region of interest.
Abstract:
Aspects of the disclosure relate to an autonomous vehicle that may detect other nearby vehicles and designate stationary vehicles as being in one of a short-term stationary state or a long-term stationary state. This determination may be made based on various indicia, including visible indicia displayed by the detected vehicle and traffic control factors relating to the detected vehicle. For example, the autonomous vehicle may identify a detected vehicle as being in a long-term stationary state based on detection of hazard lights being displayed by the detected vehicle, as well as the absence of brake lights being displayed by the detected vehicle. The autonomous vehicle may then base its control strategy on the stationary state of the detected vehicle.
Abstract:
Aspects of the disclosure relate to an autonomous vehicle that may detected other nearby vehicles and identify them as parked or unparked. This identification may be based on visual indicia displayed by the detected vehicles as well as traffic control factors relating to the detected vehicles. Detected vehicles that are in a known parking spot may automatically be identified as parked. In addition, detected vehicles that satisfy conditions that are indications of being parked may also be identified as parked. The autonomous vehicle may then base its control strategy on whether or not a vehicle has been identified as parked or not.
Abstract:
Disclosed herein are methods and systems for using prior maps for estimation of lane boundaries or other features within an environment. An example method may include receiving a location of a plurality of detected points on a roadway in an environment of an autonomous vehicle, determining, from a prior map of the roadway, a location of a plurality of reference points from a boundary marker on the roadway that correspond to the detected points on the roadway, determining distances between the detected points and the corresponding reference points based on the location of the detected points in the environment and the location of the reference points from the prior map of the roadway, determining a confidence buffer representing a threshold amount of variation associated with the prior map based at least in part on the distances between the detected points and the corresponding reference points, selecting one or more of the detected points such that the distance between a selected detected point and a corresponding reference point is less than the confidence buffer, and using the selected points to direct the autonomous vehicle along the roadway.
Abstract:
Methods and systems for detecting road curbs are described herein. A vehicle's computing system may receive point clouds collected in an incremental order as the vehicle navigates a path. The point clouds may include data points representative of the vehicle's environment at a given timepoint and include associated position information indicative of the vehicle's position at the timepoint. Based on the associated position information in the point clouds, the computing system may process the point clouds into a dense point cloud representation and may determine features of the representation. The computing system may provide the features to a classification system that is configured to output an estimate of whether the features are representative of a road curb. Based on the output of the classification system, the computing system may determine whether the given data points represent one or more road curbs in the vehicle's environment.
Abstract:
An autonomous vehicle may be configured to receive, using a computer system, a plurality of remission signals from a portion of a lane of travel in an environment in response to at least one sensor of the vehicle sensing the portion of the lane of travel. A given remission signal of the plurality of remission signals may include a remission value indicative of a level of reflectiveness for the portion of the lane of travel. The vehicle may also be configured to compare the plurality of remission signals to a known remission value indicative of a level of reflectiveness for a lane marker in the lane of travel. Based on the comparison, the vehicle may additionally be configured to determine whether the portion of the lane of travel in the environment is indicative of a presence of the lane marker.
Abstract:
Aspects of the disclosure relate to detecting and responding to objects in a vehicle's environment. For example, an object may be identified in a vehicle's environment, the object having a heading and location. A set of possible actions for the object may be generated using map information describing the vehicle's environment and the heading and location of the object. A set of possible future trajectories of the object may be generated based on the set of possible actions. A likelihood value of each trajectory of the set of possible future trajectories may be determined based on contextual information including a status of the detected object. A final future trajectory is determined based on the determined likelihood value for each trajectory of the set of possible future trajectories. The vehicle is then maneuvered in order to avoid the final future trajectory and the object.
Abstract:
Methods and systems for object and ground segmentation from a sparse one-dimensional range data are described. A computing device may be configured to receive scan data representing points in an environment of a vehicle. The computing device may be configured to determine if a test point in the scan data is likely to be an obstacle or ground by comparing the point to other points in the scan data to determine if specific constraints are violated. Points that do not pass these tests are likely to be above the ground, and therefore likely belong to obstacles.