Abstract:
An object of the present invention is to provide a method and an apparatus capable of measuring a potential of a sample surface by using a charged particle beam, or of detecting a compensation value of a variation in an apparatus condition which changes due to sample charging, by measuring a sample potential caused by irradiation with the charged particle beam. In order to achieve the object, a method and an apparatus are provided in which charged particle beams (2(a), 2(b)) emitted from a sample (23) are deflected by a charged particle deflector (33) in a state in which the sample (23) is irradiated with a charged particle beam (1), and information regarding a sample potential is detected by using a signal obtained at that time.
Abstract:
An object of the present invention is to provide a method for pattern measurement and a charged particle radiation device in which a pattern formed by using a DSA technique can be very precisely measured and inspected. According to an aspect for achieving the object, a method for pattern measurement or a charged particle radiation device for realizing the measurement is proposed as follows. A charged particle is radiated to a polymer compound used for a self-organization lithography technique, and a specific polymer is considerably contracted as compared to the other polymer among multiple polymers forming the polymer compound. Thereafter, dimensions between multiple edges of the other polymer are measured, based on a signal obtained by scanning a region including the other polymer with the charged particle beam.
Abstract:
An image processor, a method for generating a pattern using self-organizing lithographic techniques, and a computer program are provided to achieve image processing suitable for addressing a sample generated by patterning using Directed Self-Assembly (DSA), and the processor, method, and computer program are characterized in that a template for addressing is prepared on the basis of guide pattern data used for patterning by DSA. The above configuration makes it possible to provide an addressing pattern suitable for visual field positioning in measuring or inspecting a pattern formed through the patterning process using DSA.
Abstract:
The purpose of the present invention is to provide a pattern measurement device which adequately evaluates a pattern formed by means of a patterning method for forming a pattern that is not in a photomask. In order to fulfil the purpose, the present invention suggests a pattern measurement device provided with a computation device for measuring the dimensions between patterns formed on a sample, wherein: the centroid of the pattern formed on the sample is extracted from data to be measured obtained by irradiating beams; a position alignment process is executed between the extracted centroid and measurement reference data in which a reference functioning as the measurement start point or measurement end point is set; and the dimensions between the measurement start point or the measurement end point of the measurement reference data, which was subjected to position alignment, and the edge or the centroid of the pattern contained in the data to be measured is measured.
Abstract:
Provided is a pattern evaluation device with which measurement or inspection conditions, supplied for the measurement and inspection of a replica produced by transferring a pattern for a semiconductor wafer or the like, can be easily set, and with which recipes can be easily generated, when measurement and inspection conditions for a semiconductor wafer or the like and recipes in which these conditions are stored have been prepared in advance. The pattern evaluation device in which a pattern formed on a sample is evaluated on the basis of image data or signal waveforms obtained on the basis of beam irradiation or probe scanning of the sample, wherein the device conditions for evaluating a semiconductor wafer are converted to device conditions for evaluating a replica obtained by transferring a semiconductor wafer, and the converted device conditions are used to evaluate the replica.
Abstract:
The purpose of the present invention is to provide a pattern measurement device for quantitatively evaluating a pattern formed using a directed self-assembly (DSA) method with high accuracy. The present invention is a pattern measurement device for measuring distances between patterns formed in a sample, wherein the centroids of a plurality of patterns included in an image are determined; the inter-centroid distances, and the like, of the plurality of centroids are determined; and on the basis of the inter-centroid distances, and the like, of the plurality of centroids, a pattern meeting a specific condition is distinguished from patterns different from the pattern meeting the specific condition or information is calculated about the number of the patterns meeting the specific condition, the size of an area including the patterns meeting the specific condition, and the number of imaginary lines between the patterns meeting the specific condition.
Abstract:
An objective of the present invention is to provide a charged particle beam device with which information based on a charged particle which is discharged from a bottom part of high-aspect structure is revealed more than with previous technology. To achieve the objective, proposed is a charged particle beam device comprising: a first orthogonal electromagnetic field generator which deflects charged particles which are discharged from a material; a second orthogonal electromagnetic field generator which further deflects the charged particles which are deflected by the first orthogonal electromagnetic field generator; an aperture forming member having a charged particle beam pass-through aperture; and a third orthogonal electromagnetic field generator which deflects the charged particles which have passed through the aperture forming member.
Abstract:
The charged particle beam apparatus having an opening formation member formed with an opening for passage of a charged particle beam emitted from a charged particle source, and either a detector adapted to detect charged particles having passed through the passage opening or a detector adapted to detect charged particles resulting from bombardment on another member of the charged particles having passed through the opening, comprises an aligner for aligning charged particles discharged from the sample and a control unit for controlling the aligner, wherein the control unit controls the aligner to cause it to shift trajectories of the charged particles discharged from the sample so that length measurement may be executed on the basis of detection signals before and after the alignment by the aligner.