Abstract:
A method for controlling vehicle systems includes receiving monitoring information from one or more monitoring systems and determining a plurality of driver states based on the monitoring information from the one or more monitoring systems. The method includes determining a combined driver state based on the plurality of driver states and modifying control of one or more vehicle systems based on the combined driver state.
Abstract:
A computer-implemented method including, transmitting a high-spectrum energy wave towards a subject from a first sensor and transmitting a low-spectrum energy wave towards the subject from a second sensor. In response, modulation with a carrier sequence code results in a modulated evoked biological signal. The carrier sequence code has an autocorrelation function. The method includes demodulating the modulated evoked biological signal by calculating a convolution of the modulated evoked biological signal with the carrier sequence code resulting in an evoked biological signal spectrum. The evoked biological signal spectrum has a peak to sideband ratio as a function of the carrier sequence code. The method includes calculating deviations between each element of the sampled evoked biological signal and the peak to sideband ratio and filtering noise artifacts from the sampled evoked biological signal based on the deviations.
Abstract:
A system and method for processing photoplethysmography (PPG) signals in a vehicle. The system and method include receiving a PPG waveform signal from an optical sensor. The system and method also include processing a PPG measurement signal based on the PPG waveform signal. The system and method additionally include receiving a noise waveform signal from at least one of: a seat assembly sensor, a vehicle sensor, and a vehicle system. Additionally, the system and method include processing a motion artifacts measurement signal based on the noise waveform signal. The system and method further include processing a refined PPG signal to suppress the motion artifacts measurement signal from the PPG measurement signal.
Abstract:
A method for vehicle control includes receiving a color image from an imaging system. The color image includes a traffic indicator with a color portion. The method includes extracting red color components from the color image by subtracting a grayscale intensity value of each pixel from a red-scale value of each pixel. The method includes extracting green color components from the color image by subtracting the grayscale intensity value of each pixel from a green-scale value of each pixel. The method includes performing blob analysis based on the red color components and the green color components. The method includes determining, based on the blob analysis, a color of the color portion of the traffic indicator, and controlling a vehicle system of a vehicle based on the color of the color portion of the traffic indicator.
Abstract:
A method and a system for determining an information transfer rate between a driver and a vehicle, including measuring driver information and measuring vehicle information. Further, calculating a forward information transfer rate from the driver to the vehicle using the driver information and the vehicle information over a period of time, and calculating a reverse information transfer rate from the vehicle to the driver using the driver information and the vehicle information over the period of time. Additionally the method includes, calculating a driver control state using the forward information transfer rate and the reverse information transfer rate.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a driver's slow reaction time, attention lapse and/or alertness. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The systems that may be modified include: visual devices, audio devices, tactile devices, antilock brake systems, automatic brake prefill systems, brake assist systems, auto cruise control systems, electronic stability control systems, collision warning systems, lane keep assist systems, blind spot indicator systems, electronic pretensioning systems and climate control systems.
Abstract:
A method and a system for determining an information transfer rate between a driver and a vehicle, where the information transfer rate is calculated using driver information measured directly from the driver and vehicle information measured directly from the vehicle. The method also includes retrieving a baseline information transfer rate for maintaining control of the vehicle from a baseline information transfer rate database. A driver safety factor is calculated using the information transfer rate and the baseline information transfer rate.
Abstract:
Methods of assessing driver behavior include monitoring vehicle systems and driver monitoring systems to accommodate for a slow reaction time, attention lapse and/or alertness of a driver. When it is determined that a driver is drowsy, for example, the response system may modify the operation of one or more vehicle systems. The response system can modify the control of two or more systems simultaneously in response to driver behavior.
Abstract:
A computer implemented method for identifying a vehicle occupant including receiving a signal from a plurality of sensors, wherein the signal indicates a measurement of cardiac activity, determining a biomarker based on biometric features of the signal and identifying the vehicle occupant based on the biomarker.
Abstract:
A method for controlling vehicle systems includes receiving monitoring information from one or more monitoring systems and determining a plurality of driver states based on the monitoring information from the one or more monitoring systems. The method includes determining a combined driver state based on the plurality of driver states and modifying control of one or more vehicle systems based on the combined driver state.