摘要:
An arrangement of nonvolatile memory devices, having at least one memory device level stacked level by level above a semiconductor substrate, each memory level comprising an oxide layer substantially disposed above a semiconductor substrate, a plurality of word lines substantially disposed above the oxide layer; a plurality of bit lines substantially disposed above the oxide layer; a plurality of via plugs substantially in electrical contact with the word lines and, an anti-fuse dielectric material substantially disposed on side walls beside the bit lines and substantially in contact with the plurality of bit lines side wall anti-fuse dielectrics.
摘要:
A 3D memory device is based on an array of conductive pillars and a plurality of patterned conductor planes including left side and right side conductors adjacent the conductive pillars at left side and right side interface regions. Memory elements in the left side and right side interface regions comprise a programmable transition metal oxide which can be characterized by built-in self-switching behavior, or other programmable resistance material. The conductive pillars can be selected using two-dimensional decoding, and the left side and right side conductors in the plurality of planes can be selected using decoding on a third dimension, combined with left and right side selection.
摘要:
A 3D memory device includes an array of semiconductor body pillars and bit line pillars, dielectric charge trapping structures, and a plurality of levels of word line structures arranged orthogonally to the array of semiconductor body pillars and bit line pillars. The semiconductor body pillars have corresponding bit line pillars on opposing first and second sides, providing source and drain terminals. The semiconductor body pillars have first and second channel surfaces on opposing third and fourth sides. Dielectric charge trapping structures overlie the first and second channel surfaces, providing data storage sites on two sides of each semiconductor body pillar in each level of the 3D array. The device can be operated as a 3D AND-decoded flash memory.
摘要:
An integrated circuit device is described that includes a 3D memory comprising a plurality of self-aligned stacks of word lines orthogonal to and interleaved with a plurality of self-aligned stacks of bit lines. Data storage structures such as dielectric charge storage structures, are provided at cross points between word lines and bit lines in the plurality of self-aligned stacks of word lines interleaved with the plurality of self-aligned stacks of bit lines.
摘要:
A three-dimensional 3D interconnect structure with a small footprint is described, useful for connection from above to levels of circuit structures in a multi-level device. Also, an efficient and low cost method for manufacturing the 3D interconnect structure is provided.
摘要:
A memory device as described herein includes a reference array of phase change memory cells and a memory array of phase change memory cells, where a difference between a current data set stored in the reference array and an expected data set is used to determine when to refresh the memory array. The high resistance state for the reference array is a “partial reset” state having a minimum resistance less than that of the high resistance state for the memory array. Sense circuitry is adapted to read the memory cells of the reference array and to generate a refresh command signal if there is a difference between a current data set stored in the reference array and an expected data set, and control circuitry responsive to the refresh command signal to perform a refresh operation on the memory cells of the memory array.
摘要:
An anti-fuse one-time-programmable (OTP) nonvolatile memory cell has a P well substrate with two P.sup.-doped regions. Another N.sup.+doped region, functioning as a bit line, is positioned adjacent and between the two P.sup.-doped regions on the substrate. An anti-fuse is defined over the N.sup.+doped region. Two insulator regions are deposited over the two P.sup.-doped regions. An impurity doped polysilicon layer is defined over the two insulator regions and the anti-fuse. A polycide layer is defined over the impurity doped polysilicon layer. The polycide layer and the polysilicon layer function as a word line. A programmed region, i.e., a link, functioning as a diode, is formed on the anti-fuse after the anti-fuse OTP nonvolatile memory cell is programmed. The array structure of anti-fuse OTP nonvolatile memory cells and methods for programming, reading, and fabricating such a cell are also disclosed.
摘要:
Memory cells are described along with methods for manufacturing. A memory cell described herein includes a bottom electrode comprising a base portion and a pillar portion on the base portion, the pillar portion having a top surface and a width less than that of the base portion. A memory element is on the top surface of the pillar portion and comprises memory material having at least two solid phases. A top electrode is on the memory element.
摘要:
A memory device includes a first conductor, a diode, a memory element, and a second conductor arranged in series. The diode includes a first semiconductor layer over and in electrical communication with the first conductor. A patterned insulating layer has a sidewall over the first semiconductor layer. The diode includes an intermediate semiconductor layer on a first portion of the sidewall, and in contact with the first semiconductor layer. The intermediate semiconductor layer has a lower carrier concentration than the first semiconductor layer, and can include an intrinsic semiconductor. A second semiconductor layer on a second portion of the sidewall, and in contact with the intermediate semiconductor layer, has a higher carrier concentration than the intermediate semiconductor layer. A memory element is electrically coupled to the second semiconductor layer. The second conductor is electrically coupled to the memory element.
摘要:
A device includes a substrate having a first region and a second region. The first region comprises a first field effect transistor having a horizontal channel region within the substrate, a gate overlying the horizontal channel region, and a first dielectric covering the gate of the first field effect transistor. The second region of the substrate includes a second field effect transistor comprising a first terminal extending through the first dielectric to contact the substrate, a second terminal overlying the first terminal and having a top surface, and a vertical channel region separating the first and second terminals. The second field effect transistor also includes a gate on the first dielectric and adjacent the vertical channel region, the gate having a top surface that is co-planar with the top surface of the second terminal.