摘要:
A plugin hybrid electric vehicle includes an internal combustion engine, a battery, an electric machine, and a controller. The vehicle is operable in a primary electric vehicle driving mode (EV mode) and in a hybrid electric vehicle driving mode (HEV mode). The controller is programmed to receive input from the driver representing a desired operating mode and a desired energy reservation. If the desired operating mode is HEV mode, then a state of charge (SOC) offset is established as the smaller of a maximum SOC offset and an allowable SOC offset, otherwise, the SOC offset is established based on the desired energy reservation. The vehicle is operated based on the SOC offset.
摘要:
A plugin hybrid electric vehicle includes an internal combustion engine, a battery, an electric machine, and a controller. The vehicle is operable in a primary electric vehicle driving mode (EV mode) and in a hybrid electric vehicle driving mode (HEV mode). The controller is programmed to receive input from the driver representing a desired operating mode and a desired energy reservation. If the desired operating mode is HEV mode, then a state of charge (SOC) offset is established as the smaller of a maximum SOC offset and an allowable SOC offset, otherwise, the SOC offset is established based on the desired energy reservation. The vehicle is operated based on the SOC offset.
摘要:
A controller and a method for use in a vehicle to limit noise, vibration, and harshness (NVH) by controlling torque matching between a first power source and a second power source. A first and a second torque estimate are made for the first power source. The torque matching comprises calculating a correction factor based upon a comparison of the torque estimates made during steady-state operating conditions of the vehicle. The first torque estimate is based on operating parameters for the first power source and the second torque estimate is based on operating parameters for the second power source.
摘要:
A control system for a hybrid powertrain for a hybrid electric vehicle with an internal combustion engine and an electric drive system including an electric motor, a battery and a generator. The control system includes a system controller that monitors actual battery power in a closed-loop fashion and detects an error between actual battery power and a request for battery power. The engine power is corrected so that the battery is used at its intended level, thereby avoiding unnecessary charging and discharging.
摘要:
A method for a plug-in hybrid electric vehicle (PHEV) having an engine and a battery configured to respectively deliver engine power and battery power to provide a total output power for powering the vehicle includes the following. An elevated engine power which falls within a total output power range where only engine power without battery power may be delivered to power the vehicle in response to a driver demand power and which is greater than the combination of the driver demand power and vehicle powering losses is determined. The engine delivers the elevated engine power in response to the driver demand power. The extra engine power is transferred to the battery for the battery to buffer.
摘要:
A vehicle in which propulsion can be distributed between first and second axles includes: a first electric motor coupled to the first axle and a second electric motor coupled to the second axle. An electric control unit (ECU) coupled to the motors causes electrical energy to be generated by the first motor in response to the ECU determining that a wheel speed of at least one wheel associated with the first axle exceeds the vehicle speed and causing electrical energy to be supplied to the second motor in response to electrical energy being generated in the first motor.
摘要:
A system for distributing propulsion to front and rear axles of a vehicle includes: a front axle motor coupled to the front axle and a rear axle motor coupled to the rear axle. An electronic control unit (ECU) electronically coupled to the motors commands the rear axle motor to increase torque supplied to the rear axle during understeer and commands the front axle motor to increase torque supplied to the front axle during oversteer. A method to distribute propulsion to front and rear axles of a vehicle includes estimating actual yaw rate, estimating desired yaw rate, providing electrical energy to the front axle motor during oversteer, and providing electrical energy to the rear axle motor during understeer. Additionally, electrical energy may be extracted from the rear axle motor during oversteer and electrical energy may be extracted from the front axle motor during understeer.
摘要:
A vehicle in which propulsion can be distributed between first and second axles includes: a first electric motor coupled to the first axle and a second electric motor coupled to the second axle. An electric control unit (ECU) coupled to the motors causes electrical energy to be generated by the first motor in response to the ECU determining that a wheel speed of at least one wheel associated with the first axle exceeds the vehicle speed and causing electrical energy to be supplied to the second motor in response to electrical energy being generated in the first motor.
摘要:
A system and method for controlling a hybrid electric vehicle powertrain having an engine defining one power source, and a traction motor and electrical storage device defining another power source include inhibiting a stopping and a starting of the engine based upon an unintended tip-out event and an unintended tip-in event, respectively. The total power demand and the available electric power are determined. The total power demand is filtered. The engine is prevented from being pulled-up or pulled-down based upon a difference between the total power demand and the filtered power demand being exceeding a threshold. However, if the difference exceeds the threshold, and if the available electric power exceeds the total power demand, then the engine is permitted to pull-up or pull-down.
摘要:
An independent wheel torque control algorithm is disclosed for controlling motor torques applied to individual electric motors coupled to vehicle wheels in an electric vehicle. In a first range of vehicle states, vehicle steerability is favored so that the operator of the vehicle suffers little or no longitudinal propulsion loss while steering is enhanced. In a second range of vehicle states, vehicle stability is favored. According to embodiments of the disclosure, a desired yaw moment is computed and then may be reduced in magnitude due to system limitations, electrical or friction limits, which prevents the desired yaw moment from being fully realized.