摘要:
A method for manufacturing a semiconductor structure and a semiconductor device manufactured using the same are disclosed. In replacement gate process, the present invention is capable of reducing contact resistance at source/drain regions through forming doped amorphous Si layers above source/drain regions, forming contact holes (310) penetrating through the interlayer dielectric layer (300) and amorphous Si layers (251); wherein the contact holes (310) at least expose part of the source/drain regions (110), and contact layers are formed at the exposed area of the source/drain regions and sidewalls of the contact holes in the amorphous Si layer. Since contact layers are formed after high-k dielectric layer has been annealed, metal silicide layers are protected from damages at high temperatures.
摘要:
The present disclosure provides a method for forming and controlling a molecular level SiO2 interface layer, mainly comprising: cleansing before growing the SiO2 interface layer, growing the molecular level ultra-thin SiO2 interface layer; and controlling reaction between high-K gate dielectric and the SiO2 interface layer to further reduce the SiO2 interface layer. The present disclosure can strictly prevent invasion of oxygen during process integration. The present disclosure can obtain a good-quality high-K dielectric film having a small EOT. The manufacturing process is simple and easy to integrate. It is also compatible with planar CMOS process, and can satisfy requirement of high-performance nanometer level CMOS metal gate/high-K device of 45 nm node and below.
摘要:
A method for integrating a replacement gate in a semiconductor device is disclosed. The method may comprise: forming a well region on a semiconductor substrate, and defining a N-type device region and/or a P-type device region; forming a sacrificial gate stack or sacrificial gate stacks respectively on the N-type device region and/or the P-type device region, the sacrificial gate stack or each of the sacrificial gate stacks comprising a sacrificial gate dielectric layer and a sacrificial gate electrode layer, wherein the sacrificial gate dielectric layer is disposed on the semiconductor substrate, and the sacrificial gate electrode layer is disposed on the sacrificial gate dielectric layer; forming a spacer or spacers surrounding the sacrificial gate stack or the respective sacrificial gate stacks; forming source/drain regions on both sides of the sacrificial gate stack or the respective sacrificial gate stacks and embedded into the semiconductor substrate; forming a SiO2 layer on the semiconductor substrate; forming a SOG layer on the SiO2 layer; etching the SOG layer until the SiO2 layer is exposed; etching the SOG layer and the SiO2 layer at different rates in such a manner that the SiO2 layer is planarized; and forming a N-type replacement gate stack on the N-type device region and/or a P-type replacement gate stack on the P-type device region, respectively.
摘要:
The present application discloses a method for tuning the work function of a metal gate of the PMOS device, comprising the steps of depositing a layer of metal nitride or a metal on a layer of high-k gate dielectric by physical vapor deposition (PVD), as a metal gate; doping the metal gate with dopants such as Al, Pt, Ru, Ga, Ir by ion implantation; and driving the doped metal ions to the interface between the high-k gate dielectric and interfacial SiO2 by high-temperature annealing so that the doped metal ions accumulate at the interface or generate dipoles by interfacial reaction, which in turn tunes the work function of the metal gate. The inventive method can be widely used and its process is simple and convenient, has a better ability of tuning the work function of the metal gate, and is compatible with the conventional CMOS process.
摘要:
The present invention provides a method for integrating the dual metal gates and the dual gate dielectrics into a CMOS device, comprising: growing an ultra-thin interfacial oxide layer or oxynitride layer by rapid thermal oxidation; forming a high-k gate dielectric layer on the ultra-thin interfacial oxide layer by physical vapor deposition; performing a rapid thermal annealing after the deposition of the high-k; depositing a metal nitride gate by physical vapor deposition; doping the metal nitride gate by ion implantation with P-type dopants for a PMOS device, and with N-type dopants for an NMOS device, with a photoresist layer as a mask; depositing a polysilicon layer and a hard mask by a low pressure CVD process, and then performing photolithography process and etching the hard mask; removing the photoresist, and then etching the polysilicon layer/the metal gate/the high-k dielectric layer sequentially to provide a metal gate stack; forming a first spacer, and performing ion implantation with a low energy and a large angle for source/drain extensions; forming a second spacer, and performing ion implantation for source/drain regions; performing a thermal annealing so as to adjust of the metal gate work functions for the NMOS and PMOS devices, respectively, in the course when the dopants in the source/drain regions are activated.
摘要:
The present disclosure discloses a method for manufacturing an N-type MOSFET, comprising: forming a part of the MOSFET on a semiconductor substrate, the part of the MOSFET comprising source/drain regions in the semiconductor substrate, a replacement gate stack between the source/drain regions above the semiconductor substrate, and a gate spacer surrounding the replacement gate stack; removing the replacement gate stack of the MOSFET to form a gate opening exposing a surface of the semiconductor substrate; forming an interface oxide layer on the exposed surface of the semiconductor; forming a high-K gate dielectric layer on the interface oxide layer in the gate opening; forming a first metal gate layer on the high-K gate dielectric layer; implanting dopant ions into the first metal gate layer; and performing annealing to cause the dopant ions to diffuse and accumulate at an upper interface between the high-K gate dielectric layer and the first metal gate layer and a lower interface between the high-K gate dielectric layer and the interface oxide layer, and also to generate electric dipoles by interfacial reaction at the lower interface between the high-K gate dielectric layer and the interface oxide layer.
摘要:
A method for manufacturing a CMOS FET comprises forming a first interfacial SiO2 layer on a semiconductor substrate after formation a conventional dielectric isolation; forming a stack a first high-K gate dielectric/a first metal gate; depositing a first hard mask; patterning the first hard mask by lithography and etching; etching the portions of the first metal gate and the first high-K gate dielectric that are not covered by the first hard mask. A second interfacial SiO2 layer and a stack of a second high-K gate dielectric/a second metal gate are then formed; a second hard mask is deposited and patterned by lithograph and etching; the portions of the second metal gate and the second high-K gate dielectric that are not covered by the second hard mask are etched to expose the first hard mask on the first metal gate. The first hard mask and the second hard mask are removed by etching; a polysilicon layer and a third hard mask are deposited and patterned by lithography and etching to form a gate stack; a dielectric layer is deposited and etched to form first spacers. Source/drain regions and their extensions are then formed by a conventional process, and silicides are formed by silicidation to provide contact and metallization.
摘要:
A method for improving the efficiency of the electron-beam exposure is provided, comprising: step 1) coating a positive photoresist on a wafer to be processed, and performing a pre-baking; step 2) separating pattern data, optically exposing a group of relatively large patterns, and then performing a post-baking; step 3) developing the positive photoresist; step 4) performing a plasma fluorination; step 5) performing a baking to solidify the photoresist; step 6) coating a negative electron-beam resist and performing a pre-baking; step 7) electron-beam exposing a group of fine patterns; step 8) performing a post-baking; and step 9) developing the negative electron-beam resist, so that the fabrication of the patterns is finished. According to the invention, it is possible to save 30-60% of the exposure time. Thus, the exposure efficiency is significantly improved, and the cost is greatly reduced. Further, the method is totally compatible with the CMOS processes, without the need of any special equipments.
摘要:
A method for manufacturing a semiconductor device, comprising: defining an active region on the semiconductor substrate; forming an interfacial oxide layer on a surface of the semiconductor substrate; forming a high-K gate dielectric on the interfacial oxide layer; forming a first metal gate layer on the high-K gate dielectric; forming a dummy gate layer on the first metal gate layer; patterning the dummy gate layer, the first metal gate layer, the high-K gate dielectric and the interfacial oxide layer to form a gate stack structure; forming a gate spacer surrounding the gate stack structure; forming S/D regions for NMOS and PMOS respectively; depositing interlayer dielectric and planarization by CMP to expose the surface of dummy gate layer; removing the dummy gate layer so as to form a gate opening; implanting dopant ions into the first metal gate layer; forming a second metal gate layer on the first metal gate layer so as to fill the gate opening; and performing annealing, so that the dopant ions diffuse and accumulate at an upper interface between the high-K gate dielectric and the first metal gate layer and at a lower interface between the high-K gate dielectric and the interfacial oxide layer, and electric dipoles are generated by interfacial reaction at the lower interface between the high-K gate dielectric and the interfacial oxide layer.
摘要:
A method for manufacturing a CMOS FET comprises forming a first interfacial SiO2 layer on a semiconductor substrate after formation a conventional dielectric isolation; forming a stack a first high-K gate dielectric/a first metal gate; depositing a first hard mask; patterning the first hard mask by lithography and etching; etching the portions of the first metal gate and the first high-K gate dielectric that are not covered by the first hard mask. A second interfacial SiO2 layer and a stack of a second high-K gate dielectric/a second metal gate are then formed; a second hard mask is deposited and patterned by lithograph and etching; the portions of the second metal gate and the second high-K gate dielectric that are not covered by the second hard mask are etched to expose the first hard mask on the first metal gate. The first hard mask and the second hard mask are removed by etching; a polysilicon layer and a third hard mask are deposited and patterned by lithography and etching to form a gate stack; a dielectric layer is deposited and etched to form first spacers. Source/drain regions and their extensions are then formed by a conventional process, and silicides are formed by silicidation to provide contact and metallization.