摘要:
First, a metal layer is deposited on a silicon film surface to form a silicide layer in an interface between the silicon film and the metal layer. Subsequently, the metal layer is all removed by etching such that silicide islands are left on the surface of the silicon film, and then the exposed silicon film surface is dry-etched by using the silicide islands as a selective mask.
摘要:
In a method for forming a capacitor, after preparing a substrate having at least one device area thereon, an amorphous silicon film containing one type of dopant is formed on the device area. A mask layer comprising mask islands is formed and distributed on a surface of the amorphous silicon film. The surface of the amorphous silicon is dry-etched by using the mask layer as a selective etching mask to produce a jagged surface having a lot of protrusions. After forming the jagged surface, the amorphous silicon film is changed into a polycrystalline silicon film serving as a storage electrode. Finally, a dielectric film and then another storage electrode are formed sequentially on the jagged surface of the storage electrode.
摘要:
A chemical vapor deposition apparatus includes a reaction tube, a substrate-holder installed in the reaction tube, the substrate-holder holding a plurality of substrates in a vertical direction, surfaces of the substrates being held horizontally, a rotating-means for rotating the substrate-holder, a heating-means for heating the substrates, a first gas-supply nozzle tube installed vertically in the reaction tube, the first gas-supply nozzle tube having a first vertical gas-emission line of a plurality of first gas-emission holes aligned in a vertical direction, and a second gas-supply nozzle tube installed vertically in the reaction tube, the second gas-supply nozzle tube having a second vertical gas-emission line, a plurality of second gas-emission holes aligned in a vertical direction, a first gas-emitting-axis of the first gas-emission holes intersecting with a second gas-emitting-axis of the second gas-emission holes at a first intersection over the substrate, the first intersection of the first and second gas-emitting axes being deviated from the rotation center of the substrate-holder.
摘要:
A vapor-phase growth system able to avoid fluctuation of the heating performance of a heater during repeated growth processes is provided. This system includes a reactor, a substrate holder for holding a substrate, and a heater for heating the substrate held by the holder. The holder and the heater are placed in an inner space of the reactor. The holder and the substrate held by the holder divide an inner space of the reactor to thereby form a growth chamber in which a thin film is grown during a growth process and a heater chamber in which the heater is placed. The holder has a supporting member on which the substrate is placed. At least a part of the member is made of the same material as that of the thin film. The supporting member is made of a SOI substrate.
摘要:
A method of manufacturing a semiconductor device has a step whereby, when forming a gate oxide film, a thin oxide film is left on a silicon substrate onto which it is formed and whereby a heavy metal at the surface of the silicon substrate is diffused into the substrate, and a step of forming a gate oxide film onto the silicon substrate.
摘要:
A silicon semiconductor substrate including a silicon semiconductor layer at one of upper and lower surfaces thereof, the silicon semiconductor layer being composed of polysilicon or noncrystal silicon and containing oxygen in the range of 2 atomic % to 20 atomic % both inclusive, nitrogen in the range of 4 atomic % to 20 atomic % both inclusive, or both nitrogen at 2 atomic % or greater and oxygen at 1 atomic % or greater. The polysilicon or noncrystal silicon semiconductor layer acts as a core for extrinsic gettering. In the silicon semiconductor substrate, the gettering performance is not deteriorated, even if the silicon semiconductor substrate experiences thermal treatment. Thus, it is possible to get rid of contamination caused by heavy metals in the silicon semiconductor substrate.
摘要:
A method for manufacturing a semiconductor device comprises the steps of forming consecutively a silicon oxide layer and a test epitaxial layer in a test pattern area on a silicon wafer, forming an epitaxial layer in a product area for semiconductor devices and on the test epitaxial layer simultaneously, measuring a total thickness of the epitaxial layer and the test epitaxial layer formed in the test pattern area by infrared interference, and determining the thickness of the epitaxial layer formed in the product area based on the total thickness to control the thickness of the epitaxial layer in the product area. A thickness control for a very thin epitaxial layer can be obtained.
摘要:
On treating a substrate surface of a single crystal silicon substrate, Ge ions are preliminarily implanted into the substrate surface to be formed as a Ge-implanted silicon film on the single crystal silicon substrate. A film surface of Ge-implanted silicon film is treated by oxidizing the film surface to form a spontaneous oxide film. Subsequently, the spontaneous oxide film is subjected to a heat treatment in a reduced-pressure atmosphere to remove the spontaneous oxide film. Alternatively, the spontaneous oxide film is subjected to a heat treatment with a reducing gas of, for example, a hydrogen gas, a silane-based gas, or a GeH.sub.4 gas supplied onto the spontaneous oxide film to remove the spontaneous oxide film. Preferably, the Ge ions are preliminarily implanted into the substrate surface to be formed as Ge-implanted silicon film which consists, in atomic percent, essentially of at least 1% Ge.
摘要:
Disclosed herein is a semiconductor memory device including a plurality of memory cells each includes an active region which is defined in a column direction by a pair of trench isolation regions formed in a semiconductor substrate and in a row direction by an isolation gate conductor lines formed on a first gate insulating film covering the substrate, a source and a drain region selectively formed in the active region to define a channel region of a cell transistor, a second gate insulating film formed on the channel region, a word line formed on the second gate insulating film, a first insulating film covering the active region and the word line, a bit line formed on the first insulating film to overlap with the isolation gate conductor, a bit line connection conductor formed in the first insulating film to connect the drain region to the bit line with being in contact with the sidewall surface of the bit line, a second insulating film covering the bit line and the first insulating film, and a storage capacitor having a capacitor electrode connected to the source region through a contact hole provided in the first and second insulating film.
摘要:
A fabrication method of a semiconductor device with an IGFET is provided, which makes it possible to decrease the current leakage due to electrical short-circuit between a gate electrode and source/drain regions of the IGFET through conductive grains deposited on its dielectric sidewalls. After the basic structure of the IGFET is formed, first and second single-crystal Si epitaxial layers are respectively formed on the first and second source/drain regions by a selective epitaxial growth process. Then, the surface areas of the first and second single-crystal Si epitaxial layers are oxidized, and the oxidized surface areas of the first and second single-crystal Si epitaxial layers are removed by etching. If unwanted grains of poly-Si or amorphous Si are grown on the first and second dielectric sidewalls in the selective epitaxial growth process, the unwanted grains are oxidized and removed, thereby preventing electrical short-circuit from occurring between the gate electrode and the first and second source/drain regions through the unwanted grains deposited on the first and second dielectric sidewalls.