摘要:
A method of manufacturing a small, light, highly accurate and inexpensive thin film sensor element is disclosed. The thin film sensor element comprises a sensor holding substrate having an opening part and a multilayer film structure adhered thereon. The multilayer film structure comprises a first electrode film, a second electrode film, and a piezoelectric dielectric oxide film present between the first and second electrode films. The method of manufacturing the thin film sensor element comprises the steps of: forming the multilayer film structure by forming the first electrode film having a (100) plane orientation on a surface of an alkali halide substrate, forming the piezoelectric dielectric oxide thereon, and forming the second electrode film on the piezoelectric dielectric oxide; adhering the multilayer film structure on the surface of the sensor holding substrate having the opening part; and dissolving and removing the alkali halide substrate with water.
摘要:
A thin film sensor element includes a sensor holding substrate having an opening part and a multilayer film adhered thereon at least consisting of an electrode film A, an electrode film B having (100) plane orientation, and a piezoelectic dielectric oxide film present between the electrode film A and the electrode film B. As a result, a thin film sensor element which is small, light, highly accurate, and inexpensive can be attained which can be used for an acceleration sensor element and a pyroelectric infrared sensor element. On the surface of a flat plate KBr substrate, a rock-salt crystal structure oxide of a conductive NiO is formed by a plasma MOCVD method whose vertical direction is crystal-oriented to direction against the substrate surface. By means of a sputtering method, a PZT film is formed by an epitaxial growth on that surface, and a Ni-Cr electrode film is formed thereon. Next, the multilayer film structure is reversed and adhered to a sensor substrate having an opening part with an adhesive. After a connection electrode is connected, the whole structure is washed with water, thereby removing the KBr substrate.
摘要:
A method whereby perovskite type oxide dielectric thin films with ABO.sub.3 structure are able to be formed with such features as good stability, uniformity, reproducibility, or the like, with high through-put by having a deposition process, wherein the thin films are deposited on a substrate, and a stabilization process, where no deposition of the thin films takes place, repeated alternatingly while the substrate temperature being kept near the temperature at which perovskite type oxide dielectric thin films are formed. Also, by employing (i) a processing method wherein a decomposing excitation of a reactive gas due to plasma takes place on or near the deposition surface in a gaseous atmosphere comprising a gas that reacts with the elements composing the thin films, (ii) a processing method wherein an oxidation reaction takes place on the deposition surface in a gaseous atmosphere comprising at least ozone (O.sub.3), and (iii) a processing method wherein light of short wave length is irradiated on the deposition surface in a gaseous atmosphere comprising at least reactive elements in the non-deposition process, the oxygen concentration in the deposited thin films is adjusted and dielectric thin films of good quality and an extremely low defect content are realized.
摘要:
A method whereby perovskite type oxide dielectric thin films with ABO.sub.3 structure are able to be formed with such features as good stability, uniformity, reproducibility, or the like, with high through-put by having a deposition process, wherein the thin films are deposited on a substrate, and a stabilization process, where no deposition of the thin films takes place, repeated alternatingly while the substrate temperature being kept near the temperature at which perovskite type oxide dielectric thin films are formed. Also, by employing (i) a processing method wherein a decomposing excitation of a reactive gas due to plasma takes place on or near the deposition surface in a gaseous atmosphere comprising a gas that reacts with the elements composing the thin films, (ii) a processing method wherein an oxidation reaction takes place on the deposition surface in a gaseous atmosphere comprising at least ozone (O.sub.3), and (iii) a processing method wherein light of short wave length is irradiated on the deposition surface in a gaseous atmosphere comprising at least reactive elements in the non-deposition process, the oxygen concentration in the deposited thin films is adjusted and dielectric thin films of good quality and an extremely low defect content are realized.
摘要:
A laminated thin film capacitor having a substrate, at least two electrode layers, at least one dielectric layer and a pair of external electrode which are placed on respective side walls of the capacitor, wherein the metal electrode layer and the dielectric layers are laminated alternately on the substrate, and every other metal electrode layers are exposed on each of side walls of the capacitor, which capacitor is excellent in dielectric properties such as a high capacity per unit volume.
摘要:
A surface wave filter element includes a portion on which elastic surface waves propagate. This portion includes a piezoelectric material, an amorphous boron layer or plate and IDT electrodes for inputting and outputting signals. The piezoelectric material is a film made of ZnO, LiNbO.sub.3 or LiTaO.sub.3 formed by sputtering, ion beam deposition or chemical vapor deposition. The amorphous boron layer or boron plate may be formed on a substrate made of an inorganic material. The boron material is formed using electron beam deposition, ion beam deposition or chemical vapor deposition.
摘要:
A laminated thin film capacitor having a substrate, at least two electrode layers, at least one dielectric layer and a pair of external electrode which are placed on respective side walls of the capacitor, wherein the metal electrode layer and the dielectric layers are laminated alternately on the substrate, and every other metal electrode layers are exposed on each of side walls of the capacitor, which capacitor is excellent in dielectric properties such as a high capacity per unit volume.
摘要:
A NaCl oxide thin layer oriented to (100) face or a spinel oxide thin layer oriented to (100) face, a perovskite dielectric thin layer oriented to (100) face and a metal electrode are sequentially laminated on a metal electrode, thus providing a thin film capacitor. Or alternatively, a thin film capacitor is manufactured by sequentially laminating a NaCl oxide thin layer oriented to (100) face or a spinel oxide thin layer oriented to (100) face, a platinum thin layer as a lower electrode oriented to (100) face, a perovskite dielectric thin layer oriented to (100) face and a metal thin layer as an upper electrode on a substrate. A plasma-enhanced CVD method is applied to form a NaCl oxide thin layer, a spinel oxide thin layer and a perovskite dielectric thin layer while a vacuum deposition method, a sputtering method, a CVD method or a plasma-enhanced CVD method is applied for the formation of a metal electrode.
摘要:
A piezoelectric thin film can achieve a large piezoelectric displacement. A chemical composition of the piezoelectric thin film is expressed by Pb1+a(ZrxTi1−x)O3+a(0.2≦a≦0.6 and 0.50≦x≦0.62). The crystal structure of the piezoelectric thin film is a mixture of a perovskite columnar crystal region (24) having an ionic defect in which a portion of the constitutive elements of an oxygen ion, a titanium ion, and a zirconium ion is missing and a perovskite columnar crystal region (25) of stoichiometric composition having no ionic defect. This configuration allows a residual compressive stress in the crystal to be relaxed by the perovskite columnar crystal region (24) having an ionic defect, thus achieving a large piezoelectric displacement (displacement amount).
摘要翻译:压电薄膜可实现较大的压电位移。 压电薄膜的化学组成由Pb 1 + a(Zr x 1 Ti 1-x O)O 3+表示, (0.2 <= a <= 0.6和0.50 <= x <= 0.62)。 压电薄膜的晶体结构是具有离子缺陷的钙钛矿柱状晶体区域(24)的混合物,其中一部分氧离子,钛离子和锆离子的构成元素缺失,钙钛矿 没有离子缺陷的化学计量组成的柱状晶体区域(25)。 这种结构允许通过具有离子缺陷的钙钛矿柱状晶体区域(24)使晶体中的残余压缩应力松弛,从而实现大的压电位移(位移量)。
摘要:
A temperature sensor element for measuring the temperature of exhaust gas from car engines comprises a metallic support having a shape of a flat board, a first electric-insulating film existing on the support, a first temperature sensitive film existing on the first electric-insulating film and having a pair of electrodes, and a second electric-insulating film existing on the temperature sensitive film. The element is superior in thermal shock resistance. The element needs no heat-resistant cap. The element is superior in heat-response since the element has a small heat capacity.