摘要:
A photodiode includes a first conductivity type semiconductor substrate or a first conductivity type semiconductor layer; a second conductivity type semiconductor layer provided on the first conductivity type semiconductor substrate or the first conductivity type semiconductor layer; an anti-reflection film provided on a surface of a portion of the second conductivity type semiconductor layer which is in a light receiving area; a first conductive layer provided in an area in the vicinity of the light receiving area; and a passivation layer provided on the first conductive layer. Light incident on the photodiode is detected by a junction of the one of the first conductivity type semiconductor substrate and the first conductivity type semiconductor layer, and the second conductivity type semiconductor layer. The area in the vicinity of the light receiving area includes a window area having an opening in the passivation layer for partially exposing the first conductive layer.
摘要:
A first P-type diffusion layer and a P-type semiconductor layer are provided on a silicon substrate, and two N-type diffusion layers are provided on a front surface of this P-type semiconductor layer to form two light receiving units. Three-layer translucent films, a first silicon oxide film, a silicon nitride film, and a second silicon oxide film are disposed on the N-type diffusion layers and on the P-type semiconductor layer between the two diffusion layers. Holes produced during a production process and distributed and captured in two interfaces between the three-layer translucent films can reduce a field intensity in the vicinity of the surface of the P-type semiconductor layer to below a conventional level and an inversion of a conductive type to reduce a leak current between the light receiving units accordingly.
摘要:
A light receiving device includes a P type diffusion layer (101), a P type semiconductor layer (102), an N type diffusion layer (103) serving as a light receiving part, and a light transmitting film (104), all formed on a p type silicon substrate (100). The N type diffusion layer (103) has a thickness of 0.8 μm to 1.0 μm which is larger than an absorption length of incident light having wavelength of 400 nm, and such a concentration profile that a impurity concentration is not higher than 1E19 cm−3 on a surface and has a peak in a vicinity of the surface. Since recombination of carriers generated by the incident light is prevented in the vicinity of the surface of the N type diffusion layer (103), sensitivity of the light receiving device is enhanced and response speed is increased by the low-resistance N type diffusion layer (103) having a larger junction depth.
摘要:
A light receiving device includes a silicon substrate, a first P type diffusion layer on the silicon substrate, and a P type semiconductor layer on the P type diffusion layer. On a surface part of the P type semiconductor layer, two N type diffusion layers as light receiving parts, and a second P type diffusion layer between the two N type diffusion layers are provided. On the P type semiconductor layer, an antireflection film structure composed of a first silicon oxide formed by thermal oxidation and a second silicon oxide formed by CVD is provided. A film thickness of the first silicon oxide is set at about 15 nm, thus a defect in a interface between the first silicon oxide and the P type semiconductor layer is prevented. A film thickness of the second silicon oxide is set at about 100 nm, thus a leak current between cathodes is prevented when a power supply voltage is applied for long period of time.
摘要:
A light receiving device includes a silicon substrate, a first P type diffusion layer on the silicon substrate, and a P type semiconductor layer on the P type diffusion layer. On a surface part of the P type semiconductor layer, two N type diffusion layers as light receiving parts, and a second P type diffusion layer between the two N type diffusion layers are provided. On the P type semiconductor layer, an antireflection film structure composed of a first silicon oxide formed by thermal oxidation and a second silicon oxide formed by CVD is provided. A film thickness of the first silicon oxide is set at about 15 nm, thus a defect in a interface between the first silicon oxide and the P type semiconductor layer is prevented. A film thickness of the second silicon oxide is set at about 100 nm, thus a leak current between cathodes is prevented when a power supply voltage is applied for long period of time.
摘要:
A plurality of N-type diffusion layers are formed a specified distance apart on a P-type semiconductor layer. A P-type leak prevention layer formed between at least N-type diffusion layers prevents leaking between the diffusion layers. A dielectric film is formed in at least a light incident area on a P-type semiconductor layer including the diffusion layers and the leak prevention layer. Accordingly, provided are a split type light receiving element positively functioning as a split type light receiving element even when charge is accumulated in the dielectric film and having a uniform sensitivity throughout the entire area on a light receiving surface, and a circuit-built-in light receiving element and an optical disk device using the split type light receiving element.
摘要:
A surface-channel MOS transistor comprising; a gate electrode formed on a semiconductor substrate with a gate dielectric film therebetween and source/drain regions formed in the semiconductor substrate wherein the gate electrode is formed at least a polysilicon layer of a thickness of 100 to 200 nm uniformly doped with an impurity and the source/drain regions contains the same impurity in self-alignment with the gate electrode.
摘要:
A semiconductor device and a fabrication method thereof are disclosed. A silicon nitride film is formed over a silicon semiconductor substrate. Impurity ions are then implanted into desired areas of the silicon semiconductor substrate, so that nitrogen atoms and silicon atoms from the silicon nitride film are incorporated into the surface of the silicon semiconductor substrate together with introduction of impurity ions. The silicon semiconductor substrate has a minimized content of oxygen mixed thereinto and restored crystal defects filled by nitrogen atoms upon implanting of impurity ions. The fabricated semiconductor device is free from a trade-off relation between gate-electrode depletion and junction current leakage, and short-channel effects.
摘要:
A semiconductor device and a fabrication method thereof are disclosed. A silicon nitride film is formed over a silicon semiconductor substrate. Impurity ions are then implanted into desired areas of the silicon semiconductor substrate, so that nitrogen atoms and silicon atoms from the silicon nitride film are incorporated into the surface of the silicon semiconductor substrate together with introduction of impurity ions. The silicon semiconductor substrate has a minimized content of oxygen mixed thereinto and restored crystal defects filled by nitrogen atoms upon implanting of impurity ions. The fabricated semiconductor device is free from a trade-off relation between gate-electrode depletion and junction current leakage, and short-channel effects.
摘要:
Element isolation regions are first formed on a silicon substrate. Active regions other than the isolation regions are formed with an oxide film. Then, a first oxidization prevention layer, a semiconductor layer and a second oxidization prevention layer are formed on the substrate in that order. A resist pattern having a hole in a P-channel MOS transistor formation region is formed. The second oxidization prevention layer in the P-channel MOS transistor formation region is removed and an impurity is ion-implanted using the resist pattern as a mask. After removing the resist pattern, the substrate is thermally treated in the presence of an oxidizer substance to transform an exposed portion of the semiconductor layer into an oxidized semiconductor layer and at the same time to diffuse the implanted impurity in the substrate to thereby form an N-well. After removing the remaining second oxidization prevention layer and the semiconductor layer located under the remaining second oxidization prevention layer, an impurity is ion-implanted into the substrate using the oxidized semiconductor layer as a mask, to thereby form a P-well in a N-channel MOS transistor formation region of the substrate. Then the P-channel and N-channel MOS transistors are formed in respective regions.