摘要:
A semiconductor dynamic RAM provided with an I/O load (5) rendered inactive during a writing cycle comprises a monostable multivibrator (16) for receiving a read/write indicating signal W for indicating reading and writing data from and into a memory cell (2) and outputting a signal We having a shorter duration than that of the signal W at down edge of the signal W as a trigger. The output signal We of the monostable multivibrator (16) is supplied as a control signal for rendering the I/O load (5) inactive.
摘要:
A memory cell array is divided into four blocks #1 to #4. The blocks #1 and #3 are operated when a row address signal RA.sub.8 equals "0". The blocks #2 and #4 are operated when the row address signal RA.sub.8 equals "1". A spare row sub-decoder is provided in each of the blocks. Spare row sub-decoders in the blocks #1 and #2 are connected to a spare row main decoder through a single spare decoder selecting line. The spare row sub-decoders in the blocks #2 and #4 are connected to the other spare row main decoder through another spare decoder selecting line. The spare main decoders are responsive to the row address signal RA.sub.8 and row address signals RA.sub.2, RA.sub.2, . . . , RA.sub.7, RA.sub.7 for operating a spare row sub-decoder in a block which is in the operating state.
摘要:
A novel semiconductor memory device includes an address detection circuit that produces a short-width pulse in response to the detection of an address change. A column decoder-activating signal generator detects the start of the short-width pulse and in response generates a column decoder-activating signal. A second detection circuit detects the conclusion of the short-width pulse and generates a second pulse that triggers a preamplifier-activating signal that activates a preamplifier and latches the data that is present on the input/output line. A reset signal generator produces a reset signal to deactivate the column decoder-activating signal and to delay the preamplifier-activating signal. The preamplifier-activating signal generator and the reset signal generator are reset while the first pulse is output.
摘要:
A dynamic random access memory device having an input/output load connected between a pair of input/output lines and a control circuit used to generate an internal /RAS signal having a reset transition delayed with respect to the same transition of the external /RAS signal. The internal /RAS signal controls at least a word signal applied to a transistor of a selected memory cell and an enable signal applied to an enable transistor, whereby the time the transistor of the memory cell and the enable transistor become non-conductive is delayed with respect to the time at which a transfer transistor connected between each pair of bit lines and the input/output lines becomes non-conductive.
摘要:
44Gate potentials of transistors Q.sub.R0 and Q.sub.R1 provided in an active pull-up circuit APo are always controlled to be appropriate values by a clock signal .phi..sub.p. As a result, reverse flow of electric charge from a capacitor C.sub.R0 or C.sub.R1 to a bit line LB or BL can be prevented and unfavorable influence due to such reverse flow of electric charge can be avoided in operation of the active pull-up circuit APo.
摘要:
A circuit for generating a boosted signal for a word line, coupled to a word line driving signal line for transmitting a voltage signal to the word line, coupled to a first power supply, and coupled to a second power supply for providing a voltage higher than the voltage of the first power supply, can supply a compensating voltage for the word line from the second power supply through the word line driving signal line when a voltage of the word line is decreased.
摘要:
A MOS dynamic type RAM comprises memory cells (10), dummy cells (11), bit line pairs (BL, BL), word lines (WL), dummy word lines (DWL) and sense amplifiers (12). In a non-active cycle, the potentials of each pair of bit lines (BL, BL) are precharged at 1/2 of a supply potential V.sub.CC. Each sense amplifier (12) operates in an active cycle following the non-active cycle, while each active pull-up circuit (13) pulls up the potential of a higher level one of the pair of bit lines to V.sub.CC. This active cycle is defined by an internal RAS internal signal, which is generated by a NAND circuit (27) in response to an external RAS signal and an RPW signal obtained by delaying the external RAS signal by a delay circuit (20) and having a trailing edge obtained by delaying the trailing edge of the external RAS signal by a prescribed period.
摘要:
A MOS dynamic type RAM comprises memory cells (10), dummy cells (11), bit line pairs (BL, BL), word lines (WL), dummy word lines (DWL) and sense amplifiers (12). In a non-active cycle, the potentials of each pair of bit lines (BL, BL) are precharged at 1/2 of a supply potential V.sub.CC. Each sense amplifier (12) operates in an active cycle following the non-active cycle, while each active pull-up circuit (13) pulls up the potential of a higher level one of the pair of bit lines to V.sub.CC. This active cycle is defined by an internal RAS internal signal, which is generated by a NAND circuit (27) in response to an external RAS signal and an RPW signal obtained by delaying the external RAS signal by a delay circuit (20) and having a trailing edge obtained by delaying the trailing edge of the external RAS signal by a prescribed period.
摘要:
A dynamic RAM has dummy capacitors (C6, C7) having the same capacitance as a memory capacitor connected to a pair of bit lines (BL1, BL1), respectively. During an active period, respective dummy capacitors (C6, C7) are charged to the H level and L level, which are signal levels of the bit lines (BL1, BL1) and during precharge period, both dummy capacitors are equalized. Since both dummy capacitors (C6, C7) respectively connected to a pair of bit lines (BL1, BL1) are equalized during precharge period, so that the stored charge values of the dummy capacitors (C6, C7) both become the intermediate value of the ground level and supply potential level.
摘要:
A memory device provides a test mode which simultaneously carries out the function test of plural bit memory cells. In this memory device, trilevel decision is carried out based on the AND operation on the memory cell information of the selected plural bits in the single device level while bilevel decision is carried out in the board level on the basis of the OR operation on the AND result of the information of the selected plural bit memory cells and the AND result of the inverted information of the same.