摘要:
An electron gun includes an electron source configured to emit electrons. The electron source includes an electron emission region configured to emit the electrons and an electron emission restrictive region configured to restrict emission of the electrons. The electron emission restrictive region is located on a side surface of the electron source except an electron emission surface on a tip of the electron source and is covered with a different material from the electron source. The electron gun emits thermal field-emitted electrons by applying an electric field to the tip while maintaining a sufficiently low temperature to avoid sublimation of a material of the electron source. The material of the electron source may be lanthanum hexaboride (LaB6) or cerium hexaboride (CeB6). The electron emission restrictive region may be covered with carbon.
摘要:
An electron gun includes an electron source configured to emit electrons. The electron source includes an electron emission region configured to emit the electrons and an electron emission restrictive region configured to restrict emission of the electrons. The electron emission restrictive region is located on a side surface of the electron source except an electron emission surface on a tip of the electron source and is covered with a different material from the electron source. The electron gun emits thermal field-emitted electrons by applying an electric field to the tip while maintaining a sufficiently low temperature to avoid sublimation of a material of the electron source. The material of the electron source may be lanthanum hexaboride (LaB6) or cerium hexaboride (CeB6). The electron emission restrictive region may be covered with carbon.
摘要:
An electron gun, preferably a four-pole electron gun, used in an electron beam exposure apparatus is formed by: a cathode for emitting an electron beam when supplying a negative and high-accelerated voltage; a first grid provided downstream of the cathode for focusing a crossover image of the electron beam when supplying a voltage which becomes a reverse bias for the cathode, and the cathode and the first grid being arranged at a high voltage side of a high voltage insulator; an anode for collecting the electron beam which passes through the first grid, and being arranged at a low voltage side of the high voltage insulator; and a second grid provided at the high voltage side of the high voltage insulator and between the first grid and the anode, and having an aperture for limiting an amount of the electron beam passing therethrough. A voltage which becomes a forward bias for the cathode is supplied to the second grid, and the crossover image is focused at the aperture of the second grid.
摘要:
A multi-column electron beam exposure apparatus includes: multiple column cells; an electron beam converging unit in which two annular permanent magnets and electromagnetic coils are surrounded by a ferromagnetic frame, the two annular permanent magnets being magnetized in an optical axis direction and symmetrical about the optical axis, where the electromagnetic coils adjust magnetic fields of the annular permanent magnets; and a substrate provided with circular apertures through which electron beams used in the column cells pass, respectively, where the electron beam converging unit is disposed in each of the circular apertures. The two annular permanent magnets may be disposed one above the other in the optical axis direction, and the electromagnetic coils may be provided inside or outside the annular permanent magnets in their radial direction.
摘要:
A multi-column electron beam exposure apparatus includes: multiple column cells; an electron beam converging unit in which two annular permanent magnets and electromagnetic coils are surrounded by a ferromagnetic frame, each of the two annular permanent magnets being magnetized in an optical axis direction and being symmetrical about the optical axis, the electromagnetic coils disposed near the annular permanent magnets and used to adjust magnetic fields of the annular permanent magnets; and a substrate provided with circular apertures through which electron beams used in the column cells pass, respectively, the substrate having the electron beam converging unit disposed in a side portion of each of the circular apertures. The two annular permanent magnets may be disposed one above the other in the optical axis direction with same polarities facing each other, and the electromagnetic coils may be provided inside or outside the annular permanent magnets in their radial direction.
摘要:
An electron beam exposure device includes an alignment optical system; an electromagnetic lens system; a stage on which the sample is provided; and an electron gun. The electron gun is comprised of an electron generating source; an electron generating source heating element which generates heat for increasing the temperature of the electron generating source; a supporting member which supports the electron generating source and the electron generating source heating element; and a Wehnelt. The electron beam exposure device is provided with at least one auxiliary heating element located at respective portion thermally connected to the electron generating source heating element.
摘要:
Provided is an electron beam exposure apparatus for forming a desired pattern on a sample mounted on a wafer stage by exposure with an electron beam generated form an electron gun. The electron beam exposure apparatus includes: supplying device of injecting a reducing gas into a column in which the electron gun and the wafer stage are housed; and control unit of performing control so that the injection of the reducing gas into the column is continued for a predetermined period of time. Organic contamination is combined with H generated from the reducing gas by irradiation of an electron beam, and then evaporates. Further included is supplying device of injecting an ozone gas into the column. The control unit may perform control so that the injection of the ozone gas into the column in addition to the injection of the reducing gas is continued for a predetermined period of time.
摘要:
An electrostatic deflector of an electron beam exposure apparatus is disclosed. A cylindrical holding member is made of an insulating material. An electrode including a plurality of electrode members fixedly arranged in spaced relationship to each other and having at least a portion of the surface thereof grown with a metal film is disposed inside the holding member. The electrode members each formed with a metal film on the surface thereof are made of a conductive ceramic having a resistivity selected at least in the range of 0.001 &OHgr;•cm to 1000 &OHgr;•cm.
摘要:
With using one scanning stage 19 where a plurality of wafers 16A to 16E is mounted through wafer holders 20A to 20E and balancing stage 21 disposed below scanning stage 19, scanning stage 19 is scanned based on exposure data common to a plurality of charged particle beam exposure apparatus 10A to 10E, and balancing stage 21 is scanned so that barycenter G of scanning stage 19 and balancing stage 21 becomes a fixed point. The positions of reflecting mirrors 70L and 70R secured to stage 19 are measured and based on their values, the expansion/contraction ratio of stage 19 and the positions of samples 16A to 16E are calculated to obtain deviation of the positions from target positions. Stage 19 is modeled such that rigid areas 19A to 19E are loosely connected, and for each area, the positions of three points are measured to calculate deviation of the exposure target position due to rotation of each ridged area. These deviations are corrected by deflectors 18A to 18D.
摘要:
Provided is an electron beam exposure apparatus for forming a desired pattern on a sample mounted on a wafer stage by exposure with an electron beam generated form an electron gun. The electron beam exposure apparatus includes: supplying device of injecting a reducing gas into a column in which the electron gun and the wafer stage are housed; and control unit of performing control so that the injection of the reducing gas into the column is continued for a predetermined period of time. Organic contamination is combined with H generated from the reducing gas by irradiation of an electron beam, and then evaporates. Further included is supplying device of injecting an ozone gas into the column. The control unit may perform control so that the injection of the ozone gas into the column in addition to the injection of the reducing gas is continued for a predetermined period of time.