Abstract:
A method for operating a storage system includes providing a primary storage device and a secondary storage device. Data from a first storage volume is copied to a second storage volume using an internal mirror operation, the first and second storage volumes being provided within the primary storage device. The data received from the first volume is copied from the second storage volume to a third storage volume using a remote copy operation, the third storage volume being provided in the secondary storage device. The second storage volume is used for the remote copying to reduce the IO impact on the first volume. The third storage volume copies the data received from the second volume to a fourth storage volume using an internal mirror operation, the fourth storage volume being provided within the secondary storage device. The secondary storage system includes a fifth storage volume that is made available to a secondary host while the data from the third storage volume is being copied to the fourth storage volume, the secondary host being associated with the secondary storage device.
Abstract:
Provided is a semiconductor device comprising a first metal film formed above a semiconductor chip, a ball portion formed over said first metal film and made of a second metal, and an alloy layer of said first metal and said second metal which alloy layer is formed between said first metal film and said ball portion, wherein said alloy layer reaches the bottom of said first metal film, and said ball portion is covered with a resin; and a manufacturing method thereof. The present invention makes it possible to improve adhesion between the bonding pad portion and ball portion of a bonding wire over an interconnect, thereby improving the reliability of the semiconductor device.
Abstract:
A processing system includes a local or local storage and a number of remote or remote storage systems that store data mirroring that maintained by the local storage system. Data that is written, changed, deleted or other wise modified by the local storage system is periodically sent to the remote storage systems to update the mirroring data maintained by each.
Abstract:
A method is provided for improving the performance of copy operations in storage systems. The method includes storing a measure of relative availability of storage system resources, detecting operations when sequential portions of a storage media are to be accessed for writing of information, and when the measure of relative availability of system resources drops to a specified extent, introducing a wait into the operation in which sequential portions of a storage media are to be accessed for writing of information. In another implementation, a method is provided for controlling writing of data in a storage system in which a step is performed of analyzing a requested write operation to determine if the requested write operation calls for a sequential task or a random task. If the requested write operation is a sequential task, information about it is stored in a task management table. the table is used to determine if throttling is needed to carry out the requested write operation, and invokes throttling if it is needed.
Abstract:
A method and apparatus are described for providing initialization in large storage systems as a background function, upon demand, and upon receipt of write requests. The initialization may be carried out under control of the hard disk drive itself, a storage controller, or both systems. The initialization is performed transparently to the host computer making operation of the storage system immediately after it is coupled to the host feasible.
Abstract:
Replication of volumes is facilitated by tools which provide and manage a pool of mirror volumes. Primary (or production) volumes containing user provided data are easily mirrored by volumes selected from the pool. User criteria can be provided to limit the selection of candidate volumes for mirroring.
Abstract:
A processing system includes a local or local storage and a number of remote or remote storage systems that store data mirroring that maintained by the local storage system. Data that is written, changed, deleted or other wise modified by the local storage system is periodically sent to the remote storage systems via remote copy commands to update the mirroring data maintained by each. Failure of a local or a remote storage system will cause the surviving storage systems to exchange information indicative of the data maintained by each, and if differences exist, to exchange data so that the mirrored and/or mirroring data is the same.
Abstract:
Aspects of the invention provide for at least one first data portion of a first storage device in a system to be updated to a second storage and further replicating the update to a second data storage portion of the second storage device if a substantial system error fails to occur during the updating of the first data storage portion. Aspects can, for example, include facilitating restoration of a primary or secondary volume of a primary storage device or of a first or second secondary storage via secondary storage device copying, and/or alternative, alternating or internal/external application driven first and second (and/or further) secondary storage portion utilization. Aspects can also include state driven synchronization or re-synchronization of local and remote copies, or one or more of storage devices utilized can, for example, include a disk array.
Abstract:
A method and apparatus are provided for enhancing the performance of storage systems is described. In the making of an initial copy to a secondary subsystem, or in the initial storage of data onto a primary storage subsystem, null data is skipped. The data may be skipped by sending the non-null data in sequence so missing addresses are identified as being null data, or a skip message may be used to designate regions where null data is to be present.
Abstract:
A method and apparatus are provided for enhancing the performance of storage systems to allow recovery after all types of suspensions in remote copy operations. Data is synchronized after an interruption in transfer between a first storage volume of a primary storage system and a first storage volume of a secondary storage system which also includes a second storage volume. After the interruption is detected, at the primary storage system, a record is provided of the data written onto the first storage volume of the primary storage system, and at the secondary storage volume a record is provided of the data written onto the first storage volume of the secondary storage system. Then, at least a partial copy of the record of the data written onto the first storage volume of the primary storage system is written onto the second storage volume. Using the copy, the first storage volume of the secondary storage system is synchronized with the second storage volume of the secondary storage system.