Abstract:
The invention addresses providing a technology that enables it to restrain a temperature rise because of current consumed by a quantum semiconductor and wiring conductors for control. A quantum calculator disclosed herein comprises a first refrigeration tube to cool a metal body; a refrigerator framing which encloses inside the metallic body and the first refrigeration tube; a quantum bit array chip having a plurality of silicon-spin quantum bits; and multiple control wiring conductors to drive the quantum bit array chip. The quantum bit array chip is placed on the metal body and made up of multiple regions and sub-regions, each of the regions performing a quantum operation independently. The multiple control wiring conductors are connected to the multiple regions and sub-regions respectively as multiple groups of control wiring conductors. The multiple control wring conductors are disposed across the first refrigeration tube.
Abstract:
A semiconductor device includes an active region famed in a semiconductor layer formed on an insulating film famed in a semiconductor substrate and having a first extension portion extending in a first direction and a second extension portion extending in a second direction intersecting with the first direction, a first diffusion layer electrode of a first conductivity type provided in the first extension portion, second and third diffusion layer electrodes of a second conductivity type provided in the second extension portion so as to interpose a first connecting portion connecting the first extension portion and the second extension portion, a first gate electrode famed on the first extension portion between the first diffusion layer electrode and the first connecting portion through an insulating film famed on the semiconductor layer, and a second gate electrode famed on the first connecting portion through the insulating film famed on the semiconductor layer.
Abstract:
Provided is a semiconductor device which drives a power semiconductor device, in which dead times generated when switch elements of upper and lower arms are turned on and off are minimized, and a loss of a power conversion device is reduced. A semiconductor device used in a power conversion device that includes a first switch element of which the drain is connected to a first power source voltage and a second switch element of which the source is connected to a second power source voltage includes a first drive circuit that drives the first switch element, a second drive circuit that drives the second switch element, a first level shift circuit, and a second level shift circuit. The first drive circuit is connected to a third power source voltage higher by a predetermined potential with respect to a source potential of the first switch element and the source potential of the first switch element. The second drive circuit is connected to a fourth power source voltage higher by a predetermined potential with respect to the second power source voltage and the second power source voltage. Power source potentials input to the first level shift circuit and the second level shift circuit are the third power source voltage and the second power source voltage.
Abstract:
Disclosed herein is a technique for realizing a high-performance and high-reliability silicon carbide semiconductor device. A trenched MISFET with a trench formed into the drift through a p-type body layer 105 includes an n-type resistance relaxation layer 109 covering the bottom portion of the trench, and a p-type field relaxation layer 108. The p-type field relaxation layer 108 is separated from the trench bottom portion via the resistance relaxation layer 109, and is wider than the resistance relaxation layer 109. This achieves a low ON resistance, high reliability, and high voltage resistance at the same time. By forming the field relaxation layer beneath the trench, feedback capacitance can be controlled to achieve a high switching rate and high reliability.
Abstract:
A gate drive circuit to prevent a false turn-on phenomenon includes a first, second, third and fourth switching element, and a capacitor. A source of the first switching element is connected to a first voltage, and a drain of the same is connected to the main switching element's gate electrode. A source of the second switching element is connected to a second voltage, and a drain of the same is connected to the gate electrode. A source of the third switching element is connected to the first voltage, and a drain of the same is connected to a first electrode of the capacitor. A source of the fourth switching element is connected to the second voltage, and a drain of the same is connected to the first electrode and to the drain of the third switching element. A second electrode of the capacitor is connected to the gate electrode.
Abstract:
An object of the invention is to provide a control technique capable of connecting a storage battery to a DC bus via a DC/DC converter and controlling charging and discharging of the storage battery by the DC/DC converter. A DC grid system according to the invention calculates a voltage command value of a DC bus using a present voltage of a storage battery and a target voltage of the storage battery, and provides the voltage command value as a command value for each of an AC/DC converter and a DC/DC converter (see FIG. 1).
Abstract:
The object of the present invention is to compensate for a difference in threshold voltage between a plurality of switching devices incorporated in a power module.The present invention solves the subject described above by mounting a switching device having a high threshold voltage in comparison with a different switching device at a location at which the temperature of the power module during operation is higher than that at another location at which the different switching device is mounted. Eventually, a power conversion apparatus of a high performance and a vehicle drive apparatus of a high performance can be provided.