Abstract:
When DRAMs that are high-speed memories and flash memories that are lower in speed but can be larger in capacity than the DRAM are to be mounted on a DIMM, what matters in maximizing CPU memory bus throughput is the arrangement of the mounted components. The present disclosure provides a memory module (DIMM) that includes memory controllers arranged on the module surface closer to a socket terminal and DRAMs serving as high-speed memories arranged on the back surface. Nonvolatile memories as large-capacity memories are arranged on the side farther from the socket terminal.
Abstract:
The invention addresses providing a technology that enables it to restrain a temperature rise because of current consumed by a quantum semiconductor and wiring conductors for control. A quantum calculator disclosed herein comprises a first refrigeration tube to cool a metal body; a refrigerator framing which encloses inside the metallic body and the first refrigeration tube; a quantum bit array chip having a plurality of silicon-spin quantum bits; and multiple control wiring conductors to drive the quantum bit array chip. The quantum bit array chip is placed on the metal body and made up of multiple regions and sub-regions, each of the regions performing a quantum operation independently. The multiple control wiring conductors are connected to the multiple regions and sub-regions respectively as multiple groups of control wiring conductors. The multiple control wring conductors are disposed across the first refrigeration tube.
Abstract:
A storage system includes a controller part, a data storage part, and a transfer path of a signal that couples these parts. A driver included in the controller part transmits the signal including write data on the basis of a configured parameter, a receiver included in the data storage part receives the signal, and the write data included in the signal is written into a first storage area. The controller part reads the write data from the first storage area, determines whether or not a bit error exists in the write data, changes the parameter when the bit error exists to repeat similar determination and find an appropriate parameter at which the bit error no longer exists.
Abstract:
A memory module having different types of memory mounted together on a double-sided substrate has a first edge and opposite second edge and includes a plurality of memory controllers, a plurality of flash memories, and a plurality of second memories having a higher signal transmission rate than the flash memories. A socket terminal for connecting the double-sided substrate to a motherboard is formed on the front surface and the back surface of the double-sided substrate on the first edge side; the memory controllers are disposed on the second edge side; the second memories are disposed on the second edge side at positions opposite the positions at which the memory controllers are disposed; and the flash memories are disposed on at least the back surface thereof at positions that are closer to the first edge than are the positions at which the memory controllers and the second memories are disposed.
Abstract:
In methods connecting a memory module configured from DRAM, which is high-speed memory, and a memory module configured from flash memory which is slower than DRAM but is high-capacity memory, to a CPU memory bus, in the case of sequential reading, the busy rate of the CPU memory bus increases, and performance degradation occurs easily. In the present invention, an information processing device has a CPU, a CPU memory bus, and a primary storage device. The primary storage device has a first memory module and a second memory module. The first memory module has high-speed memory. The second memory module has memory having the same memory interface as that of the high-speed memory, high-capacity memory having a different memory interface from that of the high-speed memory, and a controller that controls same. The first memory module and second memory module are caused to be accessed by the memory interface of the high-speed memory.