摘要:
Aspects of the present disclosure generally relate to catalyst compositions including metal chalcogenides, processes for producing such catalyst compositions, processes for enhancing catalytic active sites in such catalyst compositions, and uses of such catalyst compositions in, e.g., processes for producing conversion products. In an aspect, a process for forming a catalyst composition is provided. The process includes introducing an electrolyte material and an amphiphile material to a metal chalcogenide to form the catalyst composition. In another aspect, a catalyst composition is provided. The catalyst composition includes a metal chalcogenide, an electrolyte material, and an amphiphile material. Devices for hydrogen evolution reaction are also provided.
摘要:
Aspects of the present disclosure generally relate to catalyst compositions including metal chalcogenides, processes for producing such catalyst compositions, processes for enhancing catalytic active sites in such catalyst compositions, and uses of such catalyst compositions in, e.g., processes for producing conversion products. In an aspect, a process for forming a catalyst composition is provided. The process includes introducing an electrolyte material and an amphiphile material to a metal chalcogenide to form the catalyst composition. In another aspect, a catalyst composition is provided. The catalyst composition includes a metal chalcogenide, an electrolyte material, and an amphiphile material. Devices for hydrogen evolution reaction are also provided.
摘要:
The present disclosure is directed to methods of securing battery tab structures to binderless, collectorless self-standing electrodes, comprising electrode active material and carbon nanotubes and no foil-based collector, and the resulting battery-tab secured electrodes. Such methods and the resulting battery tab-secured electrodes may facilitate the use of such composites in battery and power applications.
摘要:
The present disclosure is directed to a method and apparatus for continuous production of composites of carbon nanotubes and electrode active material from decoupled sources. Composites thusly produced may be used as self-standing electrodes without binder or collector. Moreover, the method of the present disclosure may allow more cost-efficient production while simultaneously affording control over nanotube loading and composite thickness.
摘要:
A component for use in an electrochemical battery, wherein the component includes a self-supporting porous metal substrate capable of acting as both an electrode and a current collector in an electrochemical battery. The present disclosure is also directed to methods of making the components of the present disclosure and electrochemical batteries including at least one component according to the present disclosure.
摘要:
Methods of making a single-walled carbon nanotube thin film, and the thin film which can be located on a substrate, and can have a resistance of less than 7500 ohm/square, and a transparency to 550 nm light of greater than 85%.
摘要:
Carbon-based electrode materials including graphite particles bridged by hemispheres of fullerene, as well as methods of synthesizing the carbon-based electrode materials, are disclosed. These carbon-based electrode materials may allow for decreased irreversible capacity loss during cycling in lithium-ion battery systems.
摘要:
The present disclosure provides for methods for preparing ruthenium nanoparticles characterized by face centered cubic crystallographic structure characterized by small particle size, substantially homogeneous particle size distribution, substantially uniform spherical shape, and substantial high temperature stability. The present disclosure further provides for methods for preparing ruthenium nanoparticles characterized by face hexagonal close packed crystallographic structure characterized by small particle size, substantially homogeneous particle size distribution, substantially uniform spherical shape, and substantial high temperature stability.
摘要:
A process for the production of coating graphene, and other carbon allotropes, onto carbon-coated magnetic nanoparticles while maintaining high magnetic moment and adsorption properties is disclosed.
摘要:
The present disclosure is directed to methods for altering the surface of carbon fibers by growing carbon nanotubes thereon. Coverage of the carbon fibers by carbon nanotubes provides increased surface area and aspect ratio, as well as provides high electrical and thermal conductivity. In some embodiments, the surface of the carbon fibers are further modified via argon-ion bombardment or plasma treatment to provide controllable defects and to allow for easier growth of carbon nanotubes on the surface of the carbon fibers.