摘要:
A method for manufacturing a semiconductor device such as a thin film transistor using a crystal silicon film is provided. The crystal silicon film is obtained by selectively forming films, particles or clusters containing nickel, iron, cobalt, ruthenium, rhodium, paradium, osmium, iridium, platinum, scandium, titanium, vanadium, chrome, manganese, copper, zinc, gold, silver or silicide thereof in a form of island, line, stripe, dot or film on or under an amorphous silicon film and using them as a starting point, by advancing its crystallization by annealing at a temperature lower than a normal crystallization temperature of an amorphous silicon. A transistor whose leak current is low and a transistor in which a mobility is high are obtained in the same time in structuring a dynamic circuit having a thin film transistor by selectively forming a cover film an a semiconductor layer which is to become an active layer of the transistor and by thermally crystallizing it thereafter.
摘要:
A process for fabricating a highly stable and reliable semiconductor, comprising: coating the surface of an amorphous silicon film with a solution containing a catalyst element capable of accelerating the crystallization of the amorphous silicon film, and heat treating the amorphous silicon film thereafter to crystallize the film.
摘要:
A cleaning method of removing a vapor-deposition material adhering to equipments without exposure to the atmosphere is provided. A vapor-deposition material adhering to equipments (components of a film-forming apparatus) such as a substrate holder, a vapor-deposition mask, a mask holder, or an adhesion preventing shield provided in a film-forming chamber are subjected to heat treatment. Because of this, the adhering vapor-deposition material is re-sublimated, and removed by exhaust through a vacuum pump. By including such a cleaning method in the steps of manufacturing an electro-optical device, the manufacturing steps are shortened, and an electro-optical device with high reliability can be realized.
摘要:
A cleaning method of removing a vapor-deposition material adhering to equipments without exposure to the atmosphere is provided. A vapor-deposition material adhering to equipments (components of a film-forming apparatus) such as a substrate holder, a vapor-deposition mask, a mask holder, or an adhesion preventing shield provided in a film-forming chamber are subjected to heat treatment. Because of this, the adhering vapor-deposition material is re-sublimated, and removed by exhaust through a vacuum pump. By including such a cleaning method in the steps of manufacturing an electro-optical device, the manufacturing steps are shortened, and an electro-optical device with high reliability can be realized.
摘要:
A process for producing an adhered SOI substrate without causing cracking and peeling of a single-crystal silicon thin film. The process consists of selectively forming a porous silicon layer in a single-crystal semiconductor substrate, adding hydrogen into the single-crystal semiconductor substrate to form a hydrogen-added layer, adhering the single-crystal semiconductor substrate to a supporting substrate, separating the single-crystal semiconductor substrate at the hydrogen-added layer by thermal annealing, performing thermal annealing again to stabilize the adhering interface, and selectively removing the porous silicon layer to give single-crystal silicon layer divided into islands.
摘要:
An active region, a source region, and a drain region are formed on a single crystal semiconductor substrate or a single crystal semiconductor thin film. Impurity regions called pinning regions are formed in striped form in the active region so as to reach both of the source region and the drain region. Regions interposed between the pinning regions serve as channel forming regions. A tunnel oxide film, a floating gate, a control gate, etc. are formed on the above structure. The impurity regions prevent a depletion layer from expanding from the source region toward the drain region.
摘要:
An EL display device capable of performing clear multi-gradation color display and electronic equipment provided with the EL display device are provided, wherein gradation display is performed according to a time-division driving method in which the luminescence and non-luminescence of an EL element (109) disposed in a pixel (104) are controlled by time, and the influence by the characteristic variability of a current controlling TFT (108) is prevented. When this method is used, a data signal side driving circuit (102) and a gate signal side driving circuit (103) are formed with TFTs that use a silicon film having a peculiar crystal structure and exhibit an extremely high operation speed.
摘要:
A process for fabricating a semiconductor device comprising the steps of introducing into an amorphous silicon film, a metallic element which accelerates the crystallization of the amorphous silicon film; applying heat treatment to the amorphous silicon film to obtain a crystalline silicon film; irradiating a laser beam or an intense light to the crystalline silicon film; and heat treating the crystalline silicon film irradiated with a laser beam or an intense light.
摘要:
A process for producing an adhered SOI substrate without causing cracking and peeling of a single-crystal silicon thin film. The process consists of selectively forming a porous silicon layer in a single-crystal semiconductor substrate, adding hydrogen into the single-crystal semiconductor substrate to form a hydrogen-added layer, adhering the single-crystal semiconductor substrate to a supporting substrate, separating the single-crystal semiconductor substrate at the hydrogen-added layer by thermal annealing, performing thermal annealing again to stabilize the adhering interface, and selectively removing the porous silicon layer to give single-crystal silicon layer divided into islands.
摘要:
A semiconductor device having a CMOS structure, wherein, in manufacturing a CMOS circuit, an impurity element which imparts p-type conductivity to the active layer of the p-channel type semiconductor device is added before forming the gate insulating film. Then, by applying thermal oxidation treatment to the active layer, the impurity element is subjected to redistribution, and the concentration of the impurity element in the principal surface of the active layer is minimized. The precise control of threshold voltage is enabled by the impurity element that is present in a trace quantity.