Abstract:
A printed wiring board includes a base insulating layer including an insulating material, a conductor layer formed on the base insulating layer and including conductor pads, a coating insulating layer formed on the base insulating layer such that the coating insulating layer is covering the conductor layer and having opening portions exposing the conductor pads, respectively, and bumps formed on the conductor pads respectively such that each of the bumps includes an electroless plating metal layer formed on a respective one of the conductor pads and a solder layer formed on the electroless plating metal layer, the electroless plating metal layer having an upper end surface formed such that a central portion of the upper end surface is recessed relative to a peripheral portion of the upper end surface.
Abstract:
A printed wiring board includes a base insulating layer, a conductor layer formed on the base insulating layer and including conductor pads, an underlayer formed on one of the conductor pads of the conductor layer and including a metal different from a metal of the conductor layer, a solder resist layer formed on the base insulating layer such that the solder resist layer is covering the conductor layer and has openings exposing the conductor pads, respectively, and a bump formed directly on a first conductor pad of the conductor pads and including a base plating layer formed in a first opening of the openings and a top plating layer formed on the base plating layer such that a metal of the base plating layer is same as the metal of the conductor layer.
Abstract:
A method for manufacturing a printed wiring board includes forming an electroless plating layer on a solder resist layer such that the electroless plating layer has a film thickness in the range of 0.05 μm to 0.70 μm, forming plating resist such that the plating resist has openings exposing portions of the electroless plating layer, applying electrolytic plating such that metal posts are formed in the openings of the plating resist, removing the plating resist, and etching the electroless plating layer exposed from the metal posts. The solder resist layer is formed such that the solder resist layer has openings exposing portions of the outermost conductor layer, the electroless plating layer is formed on the portions of the outermost conductor layer, and the plating resist is formed such that the openings of the plating resist expose the portions of the electroless plating layer formed in the openings of the solder resist layer.
Abstract:
A printed wiring board includes a base insulating layer, a conductor layer formed on the base layer and including conductor pads, an underlayer formed on one of the conductor pads and including a metal different from a metal of the conductor layer, a solder resist layer formed on the base layer such that the solder resist layer is covering the conductor layer and has openings exposing the conductor pads, and a bump formed directly on a first conductor pad of the conductor pads and including a base plating layer formed in a first opening of the openings and a top plating layer formed on the base plating layer such that a metal of the base plating layer is same as the metal of the conductor layer. The conductor pads include a second conductor pad such that the second conductor pad is the one of the conductor pads having the underlayer.
Abstract:
A printed wiring board includes a resin insulating layer including resin and particles, and a conductor layer formed on a surface of the resin insulating layer. The particles in the resin insulating layer include first particles and second particles such that the first particles are partially embedded in the resin and the second particles are completely embedded in the resin, and the resin insulating layer is formed such that the first particles has exposed surfaces exposed from the resin and covered surfaces covered by the resin, respectively, the surface of the resin insulating layer includes the first exposed surfaces, and a ratio of a second area to a first area is in a range of 0.1 to 0.25 where the first area is an area of the surface of the resin insulating layer, and the second area is obtained by summing areas of the exposed surfaces of the first particles.
Abstract:
A method for manufacturing a printed wiring board includes clamping a mask device at clamping portioned formed in the mask device with a movable clamp device to apply tensile force to the mask device, positioning the mask device over a printed wiring board having connection pads, applying the tensile force to the mask device through the clamping portions such that a mask of the mask device undergoes elastic deformation and positions of opening portions in the mask are vertically aligned relative to positions of the connection pads of the printed wiring board, and loading solder balls through the opening portions in the mask onto the connection pads of the printed wiring board, respectively.