Abstract:
A stress measuring device and a stress measuring method for measuring a stress distribution of an object are provided. The stress measuring method includes: receiving a first-dimension image of the object; marking an area of the first-dimension image to generate a marked area; calculating a first stress applied to the marked area and transforming the marked area to a strained marked area corresponding to a second-dimension image to generate a determination result; and calculating the stress distribution corresponding to the first-dimension image of the object according to the determination result.
Abstract:
An illumination device includes a substrate, a light emitting structure, a sealant, and a laminating board is provided. The light emitting structure includes a first electrode layer, a light emitting layer and a second electrode layer stacked on the substrate sequentially. The sealant covers the light emitting structure. The laminating board is attached to the substrate. The sealant is located between the laminating board and the substrate. The laminating board includes a carrier body, a metal layer and a plurality of pads. The metal layer is exposed at a first surface of the carrier body, is in contact with the sealant and shields an area of the light emitting layer of the light emitting structure. The pads are exposed at the first surface of the carrier body and electrically connected to the first electrode layer and the second electrode layer. The metal layer is electrically isolated from the pads.
Abstract:
A fabricating method of light emitting element. A substrate is provided. A plurality of first concaves and a plurality of second concaves are formed on the substrate, wherein a volume of each first concave is different from a volume of each second concave. A plurality of first light emitting diode chips and a plurality of second light emitting diode chips are provided, wherein a volume of each first light emitting diode chip is corresponding to the volume of each first concave, and a volume of each second light emitting diode chip is corresponding to the volume of each second concave. The first light emitting diode chips are moved onto the substrate such that the first light emitting diode chips go into the first concaves, and the second light emitting diode chips are moved onto the substrate such that the second light emitting diode chips go into the first concaves.
Abstract:
A light-emitting assembly includes a first substrate, a first electrode layer, a light-emitting layer, a second electrode layer, a second substrate, a first conductive member and a second conductive member. The first electrode layer, the light-emitting layer and the second electrode layer are sequentially disposed on the first substrate. An area of the second electrode layer is entirely located within an area of the light emitting layer. The second electrode layer is located between the second substrate and the light-emitting layer. The first and second conductive members are disposed between the first and second substrates. The first electrode layer is electrically connected to a first circuit on the second substrate through the first conductive member. The second electrode layer is electrically connected to a second circuit on the second substrate through the second conductive member. The second conductive member is located within the area of the second electrode layer.
Abstract:
A display panel including a substrate, a meshed shielding pattern, and a plurality of light-emitting devices is provided. The meshed shielding pattern is disposed on the substrate so as to define a plurality of pixel regions on the substrate. The light-emitting devices are disposed on the substrate. At least one light-emitting device of the light-emitting devices is disposed in each pixel region of the pixel regions, wherein an area of the pixel region is A1, an area of the light-emitting device is A2, and a ratio of A2 to A1 is below 50%.
Abstract:
An illumination device includes a substrate, a light emitting structure, a sealant, and a laminating board is provided. The light emitting structure includes a first electrode layer, a light emitting layer and a second electrode layer stacked on the substrate sequentially. The sealant covers the light emitting structure. The laminating board is attached to the substrate. The sealant is located between the laminating board and the substrate. The laminating board includes a carrier body, a metal layer and a plurality of pads. The metal layer is exposed at a first surface of the carrier body, is in contact with the sealant and shields an area of the light emitting layer of the light emitting structure. The pads are exposed at the first surface of the carrier body and electrically connected to the first electrode layer and the second electrode layer. The metal layer is electrically isolated from the pads.
Abstract:
An organic light-emitting diode (OLED) apparatus includes at least one OLED illumination module, a driving unit, an optical sensing module, a control unit, and a storage unit. The driving unit is configured to adjust voltage applied to the OLED illumination module, so as to change a CCT of the OLED illumination module. The optical sensing module is configured to sense the light emitted by the OLED illumination module. The control unit is configured to receive a feedback signal from the optical sensing module so as to adjust a light intensity and the CCT of the OLED illumination module. The storage unit is configured to store photoelectric parameter data of the OLED illumination module. The control unit is configured to adjust the CCT and the light intensity of the OLED illumination module to target values according to the photoelectric parameter data.
Abstract:
An organic light-emitting module including a light-transmissive substrate, a light extracting structure, a first electrode, an organic light-emitting stack, a second electrode, and a transparent carrying board is provided. The light-transmissive substrate has an index of refraction greater than 1.5 and has a first surface and a second surface opposite to the first surface. The light extracting structure is disposed at the first surface. The first electrode is disposed on the second surface of the light-transmissive substrate. The organic light-emitting stack is disposed on the first electrode. The second electrode is disposed on the organic light-emitting stack. The transparent carrying board is connected with the light extracting structure. A minimum distance between the light extracting structure and the transparent carrying board is less than or equal to 125 μm.
Abstract:
An illumination device including a light-emitting panel, a touch panel, and a control module is provided. The light-emitting panel includes a light-emitting layer configured to emit a light beam. The touch panel is overlaid on the light-emitting panel, and includes a first touch electrode. The control module is electrically connected to the light-emitting panel and the touch panel. The light-emitting layer further includes a light-emitting material, and the width of the light-emitting material is greater than half of the width of the first touch electrode.
Abstract:
A display panel including a substrate, a meshed shielding pattern, and a plurality of light-emitting devices is provided. The meshed shielding pattern is disposed on the substrate so as to define a plurality of pixel regions on the substrate. The light-emitting devices are disposed on the substrate. At least one light-emitting device of the light-emitting devices is disposed in each pixel region of the pixel regions, wherein an area of the pixel region is A1, an area of the light-emitting device is A2, and a ratio of A2 to A1 is below 50%.