Abstract:
Technology for programming a page of memory in a NAND memory device is disclosed and described. In an example, a method includes applying initial programming pulses for lower page programming of the page and pre-reading data of the lower page. The method also includes determining whether to apply an error recovery operation to the data of the lower page. Data indicative of secondary programming pulses to be used for programming upper page data are stored and the upper page data is programmed based on the secondary programming pulses and the data of the lower page.
Abstract:
Methods and apparatus to improve reliability and/or performance of partially written memory blocks in flash memory systems are described. In some embodiments, a storage device stores information corresponding to a partial write operation performed on a partially programmed memory block of a non-volatile memory. Memory controller logic then cause application of a reduced voltage level and/or an offset value to portion(s) of the non-volatile memory during a read or write operation to the non-volatile memory based at least in part on the stored information. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus to improve reliability and/or performance of partially written memory blocks in flash memory systems are described. In some embodiments, a storage device stores information corresponding to a partial write operation performed on a partially programmed memory block of a non-volatile memory. Memory controller logic then cause application of a reduced voltage level and/or an offset value to portion(s) of the non-volatile memory during a read or write operation to the non-volatile memory based at least in part on the stored information. Other embodiments are also disclosed and claimed.
Abstract:
Embodiments of the present disclosure include techniques and configurations for multi-pulse programming of a memory device. In one embodiment, a method includes applying multiple pulses to program one or more multi-level cells (MLCs) of a memory device, wherein individual pulses of the multiple pulses correspond with individual levels of the one or more MLCs and subsequent to applying the multiple pulses, verifying the programming of the individual levels of the one or more MLCs. Other embodiments may be described and/or claimed.
Abstract:
Embodiments of methods and systems disclosed herein provide a NAND cell programming technique that results in a substantially reduced Tprog to complete a programming operation. In particular, embodiments of the subject matter disclosed herein utilize two Vpgm programming pulses during each programming iteration, or loop. One of the two programming pulses corresponds to a conventional programming Vpgm pulse and the second pulse comprises a programming pulse that having a greater Vpgm that is greater than the conventional programming Vpgm so that the slow cells are programmed to PV in fewer pulses (iterations), thereby effectively simultaneously programming and verifying cells having different programming speeds.