Abstract:
A number of addition instructions are provided that have no data dependency between each other. A first addition instruction stores its carry output in a first flag of a flags register without modifying a second flag in the flags register. A second addition instruction stores its carry output in the second flag of the flags register without modifying the first flag in the flags register.
Abstract:
A processor is to execute and retire instructions for a virtual machine. A reload register is coupled to the core is to store a reload value. A performance monitoring counter (PMC) register is coupled to the reload register and an event-based sampler operatively is coupled to the reload register and the PMC register. The event-based sampler includes circuitry to load the reload value into the PMC register and increment the PMC register after detecting each occurrence of an event of a certain type as a result of execution of the instructions. Upon detecting an occurrence of the event after the PMC register reaches a predetermined trigger value, the event-based sampler is to execute microcode to generate field data for elements within a sampling record, wherein the field data relates to a current processor state of execution, and reload the reload value from the reload register into the PMC register.
Abstract:
Novel instructions, logic, methods and apparatus are disclosed to test transactional execution status. Embodiments include decoding a first instruction to start a transactional region. Responsive to the first instruction, a checkpoint for a set of architecture state registers is generated and memory accesses from a processing element in the transactional region associated with the first instruction are tracked. A second instruction to detect transactional execution of the transactional region is then decoded. An operation is executed, responsive to decoding the second instruction, to determine if an execution context of the second instruction is within the transactional region. Then responsive to the second instruction, a first flag is updated. In some embodiments, a register may optionally be updated and/or a second flag may optionally be updated responsive to the second instruction.
Abstract:
Novel instructions, logic, methods and apparatus are disclosed to test transactional execution status. Embodiments include decoding a first instruction to start a transactional region. Responsive to the first instruction, a checkpoint for a set of architecture state registers is generated and memory accesses from a processing element in the transactional region associated with the first instruction are tracked. A second instruction to detect transactional execution of the transactional region is then decoded. An operation is executed, responsive to decoding the second instruction, to determine if an execution context of the second instruction is within the transactional region. Then responsive to the second instruction, a first flag is updated. In some embodiments, a register may optionally be updated and/or a second flag may optionally be updated responsive to the second instruction.
Abstract:
In accordance with embodiments disclosed herein, there is provided systems and methods for minimizing bandwidth to compress an output stream of an instruction tracing system. For example, the method may include identifying a current instruction in a trace of the IT module as a conditional branch (CB) instruction. The method includes executing one of generating a CB packet including a byte pattern with an indication of outcome of the CB instruction, or adding an indication of the outcome of the CB instruction to the byte pattern of an existing CB packet. The method includes generating a packet when a subsequent instruction in the trace is not the CB instruction. The packet is different from the CB packet. The method also includes adding the packet into a deferred queue when the packet is deferrable. The method further includes outputting the CB packet followed by the deferred packet into a packet log.
Abstract:
A hardware profiling mechanism implemented by performance monitoring hardware enables page level automatic binary translation. The hardware during runtime identifies a code page in memory containing potentially optimizable instructions. The hardware requests allocation of a new page in memory associated with the code page, where the new page contains a collection of counters and each of the counters corresponds to one of the instructions in the code page. When the hardware detects a branch instruction having a branch target within the code page, it increments one of the counters that has the same position in the new page as the branch target in the code page. The execution of the code page is repeated and the counters are incremented when branch targets fall within the code page. The hardware then provides the counter values in the new page to a binary translator for binary translation.
Abstract:
In one embodiment, a processor includes a performance monitor including a last branch record (LBR) stack to store a call stack to an event of interest, where the call stack is collected responsive to a trigger for the event. The processor further includes logic to control the LBR stack to operate in a call stack mode such that an entry to a call instruction for a leaf function is cleared on return from the leaf function. Other embodiments are described and claimed.
Abstract:
A processor, system, and method are described for continued retirement of operations during a commit of a speculative region of program code. For example, one embodiment of a method comprises the operations of identifying a plurality of transactional memory regions in program code, including a first transactional memory region; and retiring one or more of a plurality of operations which follow the first transactional memory region even when a commit operation associated with the first transactional memory region is waiting to complete.
Abstract:
Novel instructions, logic, methods and apparatus are disclosed to test transactional execution status. Embodiments include decoding a first instruction to start a transactional region. Responsive to the first instruction, a checkpoint for a set of architecture state registers is generated and memory accesses from a processing element in the transactional region associated with the first instruction are tracked. A second instruction to detect transactional execution of the transactional region is then decoded. An operation is executed, responsive to decoding the second instruction, to determine if an execution context of the second instruction is within the transactional region. Then responsive to the second instruction, a first flag is updated. In some embodiments, a register may optionally be updated and/or a second flag may optionally be updated responsive to the second instruction.
Abstract:
A number of addition instructions are provided that have no data dependency between each other. A first addition instruction stores its carry output in a first flag of a flags register without modifying a second flag in the flags register. A second addition instruction stores its carry output in the second flag of the flags register without modifying the first flag in the flags register.