Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of dynamic allocation of radio resources. For example, a resource allocator may dynamically allocate to a plurality of nodes of a cellular network non-cellular radio resources for communication over a plurality of non-cellular wireless communication links, the resource allocator may be configured to assign the non-cellular radio resources to a plurality of resource blocks corresponding to a plurality of link types, and to dynamically allocate to a non-cellular wireless communication link resources from a resource block corresponding to a link type of the non-cellular wireless communication link.
Abstract:
Methods, systems, and devices for enabling wireless communication devices in a cellular wireless network to utilize small cells having coverage within a macro cell are disclosed herein. User equipment (UE) can detect the need for using a booster providing a small cell, detect availability of small cells and submit a request to infrastructure of the cellular wireless network to aid in connection with the booster that provides the small cell. The request can be enhanced with small cell location queries, small cell activation requests and/or assistance data to enable meaningful small cell selection.
Abstract:
Systems, methods, and devices for distributed device-to-device (D2D) setup are disclosed herein. User equipment (UE) includes a parameter component, a standardization component, an identifier component, and a D2D session component. The parameter component is configured to determine input parameters corresponding to the UE or a user of the UE based on one or more D2D communication rules. The input parameters include a first set of input parameters having non-standardized data and a second set of input parameters having pre-standardized data. The standardization component is configured to standardize the non-standardized data of the first set of parameters to create UE standardized data. The identifier component is configured to generate a session identifier using the UE standardized data and the pre-standardized data as input in a predefined algorithm. The D2D session component is configured to cause the UE to communicate in a D2D cluster corresponding to the session identifier.
Abstract:
Wireless communication devices may directly communicate within groups of wireless communication devices using Layer-2 communications to implement “push-to-talk” type applications. In one implementation, a method may include generating a floor request signaling message to take control of a communication channel for a group. After transmitting data relating to the communications, a floor release signaling message may be generated and transmitted a number of times.
Abstract:
Methods, systems, and devices for enabling wireless communication devices in a cellular wireless network to utilize small cells having coverage within a macro cell are disclosed herein. User equipment (UE) can detect the need for using a booster providing a small cell, detect availability of small cells and submit a request to infrastructure of the cellular wireless network to aid in connection with the booster that provides the small cell. The request can be enhanced with small cell location queries, small cell activation requests and/or assistance data to enable meaningful small cell selection.
Abstract:
Techniques to support directional transmission and reception by wireless network boosters are described. In one embodiment, for example, an apparatus may comprise logic, at least a portion of which is in hardware, the logic to receive a directionally-transmitted booster reference signal, receive a system information message comprising timing offset information, and determine a time at which to send a link establishment message based on the timing offset information and a time of receipt of the directionally-transmitted booster reference signal. Other embodiments are described and claimed.
Abstract:
Methods, systems, and devices for enabling wireless communication devices in a cellular wireless network to utilize small cells having coverage within a macro cell are disclosed herein. User equipment (UE) can detect the need for using a booster providing a small cell, detect availability of small cells and submit a request to infrastructure of the cellular wireless network to aid in connection with the booster that provides the small cell. The request can be enhanced with small cell location queries, small cell activation requests and/or assistance data to enable meaningful small cell selection.
Abstract:
Examples are disclosed for exchanging beamforming information for a first wireless link utilized as a first connection of a dual connection for user equipment (UE) to access a network. The beamforming information exchanged between the UE and a small cell base station (BS) to configure the first wireless link as a beam-formed wireless link. Other examples are described and claimed.
Abstract:
Examples are disclosed for handover/relocation of a backhaul channel between a small cell base station and a macro cell base station. The handover/relocation may be responsive to possibly changing conditions associated with a wireless link over which the backhaul channel may be established. Other examples are described and claimed.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of dynamic allocation of radio resources. For example, a resource allocator may dynamically allocate to a plurality of nodes of a cellular network non-cellular radio resources for communication over a plurality of non-cellular wireless communication links, the resource allocator may be configured to assign the non-cellular radio resources to a plurality of resource blocks corresponding to a plurality of link types, and to dynamically allocate to a non-cellular wireless communication link resources from a resource block corresponding to a link type of the non-cellular wireless communication link.