Abstract:
Techniques to support directional transmission and reception by wireless network boosters are described. In one embodiment, for example, an apparatus may comprise logic, at least a portion of which is in hardware, the logic to receive a directionally-transmitted booster reference signal, receive a system information message comprising timing offset information, and determine a time at which to send a link establishment message based on the timing offset information and a time of receipt of the directionally-transmitted booster reference signal. Other embodiments are described and claimed.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of dynamic allocation of radio resources. For example, a resource allocator may dynamically allocate to a plurality of nodes of a cellular network non-cellular radio resources for communication over a plurality of non-cellular wireless communication links, the resource allocator may be configured to assign the non-cellular radio resources to a plurality of resource blocks corresponding to a plurality of link types, and to dynamically allocate to a non-cellular wireless communication link resources from a resource block corresponding to a link type of the non-cellular wireless communication link.
Abstract:
A technology for a user equipment (UE) that is operable to connect to a third generation partnership project (3GPP) long term evolution (LTE) cell in a cellular network. Logged minimization of drive test (MDT) measurements can be recorded at the UE at a selected rate when the UE is in a radio resource control (RRC) idle mode in a first LTE cell in a cellular network. A change in a UE state of the RRC idle mode can be identified. The Logged MDT measurements can stop being recorded at the UE when the UE state changes from a camped normally UE state to another UE state of the RRC idle mode. The Logged MDT measurements can resume being recorded when the UE state changes to the camped normally UE state of the RRC idle mode.
Abstract:
Methods, systems, and devices for enabling wireless communication devices in a cellular wireless network to utilize small cells having coverage within a macro cell are disclosed herein. User equipment (UE) can detect the need for using a booster providing a small cell, detect availability of small cells and submit a request to infrastructure of the cellular wireless network to aid in connection with the booster that provides the small cell. The request can be enhanced with small cell location queries, small cell activation requests and/or assistance data to enable meaningful small cell selection.
Abstract:
Embodiments of an Evolved Node-B (eNB) and method for collecting and reporting data related to a coverage area in a wireless network are generally described herein. The eNB may be configured to track geographic bin information for one or more User Equipment (UEs). The eNB may comprise hardware processing circuitry configured to, for each of the UEs, measure an angle of arrival for the UE and a propagation delay for the UE, and to select a geographic bin for the UE from a set of candidate geographic bins. The hardware processing circuitry may be further configured to send, for each of the candidate geographic bins, performance data for the candidate geographic bin to the TCE when a number of UEs for which the candidate geographic bin is selected is not less than a UE distribution threshold.
Abstract:
Systems, methods, and devices for distributed device-to-device (D2D) setup are disclosed herein. User equipment (UE) includes a parameter component, a standardization component, an identifier component, and a D2D session component. The parameter component is configured to determine input parameters corresponding to the UE or a user of the UE based on one or more D2D communication rules. The input parameters include a first set of input parameters having non-standardized data and a second set of input parameters having pre-standardized data. The standardization component is configured to standardize the non-standardized data of the first set of parameters to create UE standardized data. The identifier component is configured to generate a session identifier using the UE standardized data and the pre-standardized data as input in a predefined algorithm. The D2D session component is configured to cause the UE to communicate in a D2D cluster corresponding to the session identifier.
Abstract:
A technology for a user equipment (UE) that is operable to connect to a third generation partnership project (3GPP) long term evolution (LTE) cell in a cellular network. Logged minimization of drive test (MDT) measurements can be recorded at the UE at a selected rate when the UE is in a radio resource control (RRC) idle mode in a first LTE cell in a cellular network. A change in a UE state of the RRC idle mode can be identified. The Logged MDT measurements can stop being recorded at the UE when the UE state changes from a camped normally UE state to another UE state of the RRC idle mode. The Logged MDT measurements can resume being recorded when the UE state changes to the camped normally UE state of the RRC idle mode.
Abstract:
Methods, systems, and devices for enabling wireless communication devices in a cellular wireless network to utilize small cells having coverage within a macro cell are disclosed herein. User equipment (UE) can detect the need for using a booster providing a small cell, detect availability of small cells and submit a request to infrastructure of the cellular wireless network to aid in connection with the booster that provides the small cell. The request can be enhanced with small cell location queries, small cell activation requests and/or assistance data to enable meaningful small cell selection.
Abstract:
Examples are disclosed for deploying small cells as secondary cells for user equipment (UE). The examples include an UE, one or more small cell evolved node B (eNBs) or a macro cell eNB gathering information and reporting the gathered information to a management entity for an evolved packet core. The gathered information may be associated with the one or more small cell eNBs serving as a secondary cell for the UE while the macro cell eNB may serve as a primary cell. In some examples, the gathered information may be reported in one or more minimization of drive tests (MDT) reports. The MDT reports may be sent to the management entity by the UE, small cell eNBs or macro cell eNBs for the management entity to manage deployment of the one or more small cell eNBs. Other examples are described and claimed.
Abstract:
A technology for a user equipment (UE) that is operable to connect to a third generation partnership project (3GPP) long term evolution (LTE) cell in a cellular network. Logged minimization of drive test (MDT) measurements can be recorded at the UE at a selected rate when the UE is in a radio resource control (RRC) idle mode in a first LTE cell in a cellular network. A change in a UE state of the RRC idle mode can be identified. The Logged MDT measurements can stop being recorded at the UE when the UE state changes from a camped normally UE state to another UE state of the RRC idle mode. The Logged MDT measurements can resume being recorded when the UE state changes to the camped normally UE state of the RRC idle mode.