Abstract:
A deposition chamber is provided. The deposition chamber includes a plurality of sputter guns disposed within the chamber, wherein the plurality of sputter guns are operable to vertically extend and retract within the chamber and wherein each gun of the plurality of sputter guns is pivotable around a pivot axis. The chamber includes a substrate support rotatable around a first axis and a second axis and a plate disposed over the substrate support. The plate has a plurality of apertures extending therethrough. The plurality of apertures includes an aperture located below each sputter gun of the plurality of sputter guns and a centrally located aperture.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
Abstract:
Combinatorial processing of a substrate comprising site-isolated sputter deposition and site-isolated plasma processing can be performed in a same process chamber. The process chamber, configured to perform sputter deposition and plasma processing, comprises a grounded shield having at least an aperture disposed above the substrate to form a small, dark space gap to reduce or eliminate any plasma formation within the gap. The plasma processing may include plasma etching or plasma surface treatment.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
Abstract:
An apparatus for sputtering wherein magnets within the magnetron of a sputtering source are positioned such that Ar+ ions arriving at the surface of a multi-piece target do not strike the target perpendicular to the surface at the gaps between the sectors of the target. The off-angle bombardment of the Ar+ ions ensures that the Ar+ ions do not result in the sputtering and deposition of target backing material through the gap between the target sectors.
Abstract translation:一种用于溅射的设备,其中溅射源的磁控管内的磁体被定位成使得到达多件式靶的表面的Ar +离子在目标的扇区之间的间隙处不垂直于表面撞击靶。 Ar +离子的偏角轰击确保Ar +离子不会导致目标背衬材料通过目标部分之间的间隙的溅射和沉积。
Abstract:
A sputter gun assembly is provided. The sputter gun assembly includes a target and a target backing plate coupled to the back of the target. A magnetron is positioned within a cooling chamber and is disposed over the target backing plate and defines a gap between the magnetron and the target backing plate. A fluid inlet and a fluid outlet are connected to the cooling chamber. A restriction bar is positioned within the cooling chamber, wherein the restriction bar is configured to prevent a flow of fluid through the inlet to the outlet unless the fluid traverses the gap defined between the magnetron and the target backing plate. The sputter gun assembly further includes a diverter surrounding the magnetron. The diverter further includes slots in its surface that serve to direct cooling fluid through the gap formed between defined between the magnetron and the target backing plate.
Abstract:
A nonvolatile memory element is disclosed comprising a first electrode, a near-stoichiometric metal oxide memory layer having bistable resistance, and a second electrode in contact with the near-stoichiometric metal oxide memory layer. At least one electrode is a resistive electrode comprising a sub-stoichiometric transition metal nitride or oxynitride, and has a resistivity between 0.1 and 10 Ωcm. The resistive electrode provides the functionality of an embedded current-limiting resistor and also serves as a source and sink of oxygen vacancies for setting and resetting the resistance state of the metal oxide layer. Novel fabrication methods for the second electrode are also disclosed.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.
Abstract:
Embodiments of the invention include nonvolatile memory elements and memory devices comprising the nonvolatile memory elements. Methods for forming the nonvolatile memory elements are also disclosed. The nonvolatile memory element comprises a first electrode layer, a second electrode layer, and a plurality of layers of an oxide disposed between the first and second electrode layers. One of the oxide layers has linear resistance and substoichiometric composition, and the other oxide layer has bistable resistance and near-stoichiometric composition. Preferably, the sum of the two oxide layer thicknesses is between about 20 Å and about 100 Å, and the oxide layer with bistable resistance has a thickness between about 25% and about 75% of the total thickness. In one embodiment, the oxide layers are formed using reactive sputtering in an atmosphere with controlled flows of argon and oxygen.