Abstract:
A semiconductor device is manufactured by modifying an electromagnetic field within a deposition chamber. In embodiments in which the deposition process is a sputtering process, the electromagnetic field may be modified by adjusting a distance between a first coil and a mounting platform. In other embodiments, the electromagnetic field may be adjusted by applying or removing power from additional coils that are also present.
Abstract:
An apparatus leverages a physical vapor deposition (PVD) process chamber with a wafer-to-target distance of approximately 400 millimeters to deposit tantalum film on through silicon via (TSV) structures. The PVD process chamber includes a source that is configured with dual magnet source compensation. The PVD chamber also includes an upper electromagnet assembly exterior to the chamber body in close proximity to the source, a magnetron assembly in the source including dual magnets with dual radius trajectories, a shield within the chamber body, and a plurality of grounding loops that are symmetrically spaced about a periphery of a substrate support assembly and are configured to provide an RF ground return path between the substrate support assembly and the shield.
Abstract:
Methods and apparatus for processing substrates are disclosed. In some embodiments, a process chamber for processing a substrate includes: a body having an interior volume and a target to be sputtered, the interior volume including a central portion and a peripheral portion; a substrate support disposed in the interior volume opposite the target and having a support surface configured to support the substrate; a collimator disposed in the interior volume between the target and the substrate support; a first magnet disposed about the body proximate the collimator; a second magnet disposed about the body above the support surface and entirely below the collimator and spaced vertically below the first magnet; and a third magnet disposed about the body and spaced vertically between the first magnet and the second magnet. The first, second, and third magnets are configured to generate respective magnetic fields to redistribute ions over the substrate.
Abstract:
The invention provides devices and methods for depositing uniform coatings using cylindrical magnetron sputtering. The devices and methods of the invention are useful in depositing coatings on non-cylindrical workpiece surfaces. An assembly of electromagnets located within the bore of a hollow cylindrical emitter is used to form a magnetic field exterior to and near the exterior surface of the emitter. The magnet assembly configuration is selected to provide a magnetic field configuration compatible with the workpiece surface contour. The electromagnet assembly may be a plurality of magnet units, each unit having at least one electromagnet. The magnetic field strength from each magnet unit is separately and electrically adjustable. Each electromagnet in the assembly has a coil of electrically conducting material surrounding a specially shaped core of magnetic material.
Abstract:
A PVD chamber for growing a magnetic film of NiFe alloy at a growth rate of greater than 200 nm/minute produces a film exhibiting magnetic skew of less than plus or minus 2 degrees, magnetic dispersion of less than plus or minus 2 degrees, DR/R of greater than 2 percent and film stress of less than 50 MPa. NiFe alloy is sputtered at a distance of 2 to 4 inches, DC power of 50 Watts to 9 kiloWats and pressure of 3 to 8 milliTorr. The chamber uses a unique field shaping magnetron having magnets arranged in outer and inner rings extending about a periphery of the magnetron except in two radially opposed regions in which the inner and outer rings diverge substantially toward a central axis of the magnetron.
Abstract:
A method of manufacturing an organic light-emitting display apparatus includes preparing a deposition target in which an organic light-emitting portion is formed on a substrate, forming a pre-encapsulation layer for encapsulating the organic light-emitting portion by using a facing target sputtering apparatus, and forming an encapsulation layer by performing a plasma surface process on the pre-encapsulation layer by using the facing target sputtering apparatus. The facing target sputtering apparatus includes a chamber in which a mounting portion for accommodating the deposition target is provided, a gas supply portion facing the mounting portion and supplying gas to the chamber, a first target portion and a second target portion disposed in the chamber and facing each other, and an induced magnetic field coil surrounding the exterior of the chamber.
Abstract:
A physical vapor deposition (PVD) system and method includes a chamber including a target and a pedestal supporting a substrate. A target bias device supplies DC power to the target during etching of the substrate. The DC power is greater than or equal to 8 kW. A magnetic field generating device, including electromagnetic coils and/or permanent magnets, creates a magnetic field in a chamber of the PVD system during etching of the substrate. A radio frequency (RF) bias device supplies an RF bias to the pedestal during etching of the substrate. The RF bias is less than or equal to 120V at a predetermined frequency. A magnetic field produced in the target is at least 100 Gauss inside of the target.
Abstract:
The present invention is a device for controlling sputter coating deposition to at least one surface of at least one substrate. The device includes a magnetic structure having a plurality of electrically isolated and magnetically coupled magnetic pole piece structures. A plurality of magnetic concentric rings is mounted behind at least one target surface. A central upright common magnetic core connects the plurality of magnetic pole piece structures. A plurality of upright pole pieces arranged parallel to each other is attached to each of the magnetic pole piece structures and arranged at midpoints of the plurality of magnetic concentric rings. The magnetic structure includes a plurality of electromagnetic coils wound over the plurality of magnetic pole piece structures arranged to form sets of coils. The sets of coils can be energized in forward or reverse mode thereby impacting the target at a greater angle resulting in higher angle particle ejection.
Abstract:
A magnetron plasma sputtering apparatus includes a sputtering chamber having a loading portion and an engaging portion opposite to the loading portion. A substrate is mounted to the loading portion. A target is mounted to the engaging portion. A sputtering space is defined between the loading portion and the engaging portion. A reference line extends through the loading portion, the sputtering space, and the engaging portion in sequence. A guiding coil surrounds the sputtering space with the reference line located in the center. A magnetron device is located at a side of the sputtering chamber adjacent to the engaging portion. The magnetron device has a magnetization side facing the engaging portion.
Abstract:
A magnet assembly for a magnetron sputtering device having circular, linear or other types of planar targets including two permanent magnets and an electromagnet, e.g., electromagnetic coil between the permanent magnets associated with a sputtering target of a target assembly. An electrical control circuit is arranged to selectively adjust at least the current level and the direction of current to the electromagnet to alter the magnetic fields of the magnet assembly thereby encompassing the entire portions of the sputtering target, including the extreme inner and outer portions of the sputtering target to optimize the target uniformity and the sputtered film uniformity on a substrate. Methods for operating the magnet assembly of the magnetron sputtering devices, for optimizing the target utilization and sputtered film uniformity on a substrate, and for operating the magnetron sputtering process in a reactive gas environment to form an insulating or dielectric thin film are also provided.