Abstract:
Bulk finFET well contacts with fin pattern uniformity and methods of manufacture. The method includes providing a substrate with a first region and a second region, the first region comprising a well with a first conductivity. The method further includes forming contiguous fins over the first region and the second region. The method further includes forming an epitaxial layer on at least one portion of the fins in the first region and at least one portion of the fins in the second region. The method further includes doping the epitaxial layer in the first region with a first type dopant to provide the first conductivity. The method further includes doping the epitaxial layer in the second region with a second type dopant to provide a second conductivity.
Abstract:
A method includes forming at least one shallow trench isolation structure in a substrate to isolate adjacent different type devices. The method further includes forming a barrier trench structure in the substrate to isolate diffusions of adjacent same type devices. The method further includes spanning the barrier trench structure with material to connect the diffusions of the adjacent same type device, on a same level as the adjacent same type devices.
Abstract:
Semiconductor structures with damascene metal gates and pixel sensor cell shields, methods of manufacture and design structures are provided. The method includes forming a dielectric layer over a dummy gate structure. The method further includes forming one or more recesses in the dielectric layer. The method further includes removing the dummy gate structure in the dielectric layer to form a trench. The method further includes forming metal in the trench and the one more recesses in the dielectric layer to form a damascene metal gate structure in the trench and one or more metal components in the one or more recesses.
Abstract:
Low capacitance finFET gate structures and methods of manufacturing. The method includes forming a layer of material on a substrate. The method further includes forming a dummy gate structure on the substrate which abuts the layer of material. The method further includes forming at least one spacer adjacent to the dummy gate structure and the layer of material. The method further includes removing the dummy gate structure and at least a portion of the layer of material to form an opening with a varying length. The method further includes forming a replacement gate structure with varying length by depositing gate material in the opening with the varying length.
Abstract:
A non-uniform gate dielectric charge for pixel sensor cells, e.g., CMOS optical imagers, and methods of manufacturing are provided. The method includes forming a gate dielectric on a substrate. The substrate includes a source/drain region and a photo cell collector region. The method further includes forming a non-uniform fixed charge distribution in the gate dielectric. The method further includes forming a gate structure on the gate dielectric.
Abstract:
Merged fin structures for finFET devices and methods of manufacture are disclosed. The method of forming the structure includes forming a plurality of fin structures on an insulator layer. The method further includes forming a faceted structure on adjacent fin structures of the plurality of fin structures. The method further includes spanning a gap between the faceted structures on the adjacent fin structures with a semiconductor material.
Abstract:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a high-leakage dielectric formed over an active region of a FET and a low-leakage dielectric formed on the active region and adjacent the high-leakage dielectric. The low-leakage dielectric has a lower leakage than the high-leakage dielectric. Also provided is a structure and method of fabricating the structure.
Abstract:
Approaches for zero capacitance memory cells are provided. A method of manufacturing a semiconductor structure includes forming a channel region by doping a first material with a first type of impurity. The method includes forming source/drain regions by doping a second material with a second type of impurity different than the first type of impurity, wherein the second material has a smaller bandgap than the first material. The method includes forming lightly doped regions between the channel region and the source/drain regions, wherein the lightly doped regions include the second material. The method includes forming a gate over the channel region, wherein the second material extends under edges of the gate.
Abstract:
A design structure is embodied in a machine readable medium for designing, manufacturing, or testing a design. The design structure includes a high-leakage dielectric formed over an active region of a FET and a low-leakage dielectric formed on the active region and adjacent the high-leakage dielectric. The low-leakage dielectric has a lower leakage than the high-leakage dielectric. Also provided is a structure and method of fabricating the structure.