Abstract:
The present invention relates to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
Abstract:
The present invention related to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
Abstract:
A donor wafer containing integrated semiconductor device. The donor wafer has a donor wafer membrane portion that has a device layer and a buried insulating layer. The donor wafer membrane portion has a number of integrated semiconductor devices where each integrated semiconductor device within the plurality of semiconductor devices corresponds to a die formed on the donor wafer. The donor wafer membrane portion has a diameter of at least 200 mm. The donor wafer has a crystalline substrate that is substantially removed from an area of the donor wafer membrane portion such that the device layer and the buried insulating layer of the donor wafer membrane in the area is configured to conform to a pattern specific topology on an acceptor surface. The donor wafer further has a support structure attached to regions of the donor wafer that are outside of the donor wafer membrane portion.
Abstract:
An article of manufacture is formed by preparing a first silicon-on-insulator (SOI) wafer with first bonding pads at a first top or back-end-of-line (BEOL) surface thereof, preparing a second SOI wafer with second bonding pads at a second BEOL surface thereof, and attaching the first and second SOI wafers by bonding their bonding pads together, thereby producing a sandwiched wafer with first and second bottom or front-end-of-line (FEOL) surfaces facing outward and with first and second BEOL surfaces facing each other near the midline of the sandwiched wafer. The first SOI wafer then is prepared for packaging by first removing the silicon substrate from the first FEOL surface to reveal a buried oxide (BOX) layer, then fabricating interconnects atop the BOX layer and forming input output pads atop the interconnects.
Abstract:
A process includes forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer including a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer. A resultant article of manufacture is also disclosed.
Abstract:
A process comprises insulating a porous low k substrate with an organic polymer coating where the polymer does not penetrate or substantially penetrate the pores of the substrate, e.g., pores having a pore diameter of about one nm to about 5 nm, thereby completely or substantially mitigating the potential for capacitance increase of the substrate. The substrate comprises porous microcircuit substrate materials with surface pores optionally opening into subsurface pores. The organic polymer has a molecular weight greater than about 5,000 to greater than about 10,000 and a glass transition temperature greater than about 200° C. up to about the processing temperature required for forming the imaging layer and antireflective layer in a microcircuit, e.g., greater than about 225° C. The invention includes production of a product by this process and an article of manufacture embodying these features.
Abstract:
Bonding of substrates including metal-dielectric patterns on a surface with the metal raised above the dielectric, as well as related structures, are disclosed. One structure includes: a first substrate having a metal-dielectric pattern on a surface thereof, the metal-dielectric pattern including: a metal having a concave upper surface; and a dielectric having a substantially uniform upper surface, wherein the metal on the first substrate is raised above the dielectric on the first substrate; and a second substrate bonded with the first substrate, the second substrate including: a dielectric; and a metal positioned substantially below the dielectric of the second substrate, wherein the first substrate and the second substrate are bonded only at the metal from the first substrate and the metal from the second substrate.
Abstract:
A process and resultant article of manufacture made by such process comprises forming through vias needed to connect a bottom device layer in a bottom silicon wafer to the one in the top device layer in a top silicon wafer comprising a silicon-on-insulator (SOI) wafer. Through vias are disposed in such a way that they extend from the middle of the line (MOL) interconnect of the top wafer to the buried oxide (BOX) layer of the SOI wafer with appropriate insulation provided to isolate them from the SOI device layer.
Abstract:
The present invention related to CNT filled polymer composite system possessing a high thermal conductivity and high temperature stability so that it is a highly thermally conductive for use in 3D and 4D integration for joining device sub-laminate layers. The CNT/polymer composite also has a CTE close to that of Si, enabling a reduced wafer structural warping during high temperature processing cycling. The composition is tailored to be suitable for coating, curing and patterning by means conventionally known in the art.
Abstract:
A process comprises insulating a porous low k substrate with an organic polymer coating where the polymer does not penetrate or substantially penetrate the pores of the substrate, e.g., pores having a pore diameter of about one nm to about 5 nm, thereby completely or substantially mitigating the potential for capacitance increase of the substrate. The substrate comprises porous microcircuit substrate materials with surface pores optionally opening into subsurface pores. The organic polymer has a molecular weight greater than about 5,000 to greater than about 10,000 and a glass transition temperature greater than about 200° C. up to about the processing temperature required for forming the imaging layer and antireflective layer in a microcircuit, e.g., greater than about 225° C. The invention includes production of a product by this process and an article of manufacture embodying these features.