Abstract:
A method for providing a magnetic device and the magnetic device so provided are described. The magnetic device includes a magnetic layer having a surface. In some aspects, the magnetic layer is a free layer, a reference layer, or a top layer thereof. A tunneling barrier layer is deposited on the magnetic layer. At least a portion of the tunneling barrier layer adjacent to the magnetic layer is deposited at a deposition angle of at least thirty degrees from a normal to the surface of the magnetic layer. In some aspects, the deposition angle is at least fifty degrees.
Abstract:
A device including a first magnetic layer, a templating structure and a second magnetic layer is described. The templating structure is on the first magnetic layer. The second magnetic layer is on the templating structure. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. At least one of the first magnetic layer and the second magnetic layer includes at least one of a Heusler compound and an L10 compound.
Abstract:
A device including a templating structure and a magnetic layer is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The magnetic layer is on the templating structure and includes at least one of a Heusler compound and an L10 compound. The magnetic layer is in contact with the templating structure and being magnetic at room temperature.
Abstract:
A spin-current switched magnetic memory element includes a plurality of magnetic layers, at least one of the plurality of magnetic layers having a perpendicular magnetic anisotropy component and including a current-switchable magnetic moment, and at least one barrier layer formed adjacent to the plurality of magnetic layers. The plurality of magnetic layers includes at least one composite layer.
Abstract:
A magnetic device and method for providing the magnetic device are disclosed. The magnetic device includes a multilayer structure and a magnetic layer. The multilayer structure includes alternating layers of A and E. A includes a first material. The first material includes at least one of Co, Ru, or Ir. The first material may include an IrCo alloy. E includes at least one other material that includes Al. The other material(s) may include an alloy selected from AlGa, AlSn, AlGe, AlGaGe, AlGaSn, AlGeSn, and AlGaGeSn. A composition of the multilayer structure is represented by A1-xEx, where x is at least 0.45 and not more than 0.55. The magnetic layer includes an Al-doped Heusler compound. The magnetic layer shares an interface with the multilayer structure.
Abstract:
A device including a first magnetic layer, a templating structure and a second magnetic layer is described. The templating structure is on the first magnetic layer. The second magnetic layer is on the templating structure. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. At least one of the first magnetic layer and the second magnetic layer includes at least one of a Heusler compound and an L10 compound.
Abstract:
A device including a templating structure and a magnetic layer on the templating structure is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. Further, E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir, D includes at least 50 atomic percent of the at least one constituent. The templating structure is nonmagnetic at room temperature. The magnetic layer includes at least one of a Heusler compound and an L10 compound, the magnetic layer being in contact with the templating structure.
Abstract:
A device including a templating structure and a magnetic layer is described. The templating structure includes D and E. A ratio of D to E is represented by D1-xEx, with x being at least 0.4 and not more than 0.6. E includes a main constituent. The main constituent includes at least one of Al, Ga, and Ge. E includes at least fifty atomic percent of the main constituent. D includes at least one constituent that includes Ir. D includes at least 50 atomic percent of the at least one constituent. The magnetic layer is on the templating structure and includes at least one of a Heusler compound and an L10 compound. The magnetic layer is in contact with the templating structure and being magnetic at room temperature.
Abstract:
A method for providing a magnetic device and the magnetic device so provided are described. The magnetic device includes a magnetic layer having a surface. In some aspects, the magnetic layer is a free layer, a reference layer, or a top layer thereof. A tunneling barrier layer is deposited on the magnetic layer. At least a portion of the tunneling barrier layer adjacent to the magnetic layer is deposited at a deposition angle of at least thirty degrees from a normal to the surface of the magnetic layer. In some aspects, the deposition angle is at least fifty degrees.
Abstract:
Electrolyte gating with ionic liquids is a powerful tool for inducing conducting phases in correlated insulators. An archetypal correlated material is VO2 which is insulating only at temperatures below a characteristic phase transition temperature. We show that electrolyte gating of epitaxial thin films of VO2 suppresses the metal-to-insulator transition and stabilizes the metallic phase to temperatures below 5 K even after the ionic liquid is completely removed. We provide compelling evidence that, rather than electrostatically induced carriers, electrolyte gating of VO2 leads to the electric field induced creation of oxygen vacancies, and the consequent migration of oxygen from the oxide film into the ionic liquid.