摘要:
The electronic device comprises a semiconductor chip comprising a first main face, a second main face opposite to the first main face, side faces connecting the first and second main faces, and a sensor element or actuator element disposed at the first main face, and a substrate, wherein the semiconductor chip is disposed above the substrate, the first main face of the semiconductor chip facing the substrate, wherein the substrate comprises a substrate opening, the substrate opening permitting passage of signals to the sensor element or from the actuator element.
摘要:
In accordance with an embodiment, a MEMS structure is produced on a front side of a substrate. A decoupling structure which has recesses is produced in the substrate, which decoupling structure decouples a first region from a second region of the substrate in terms of stresses. In a rear side, situated opposite the front side, of the substrate, a first cavity is produced by means of a first etching process and a second cavity is produced by means of a second etching process. The first cavity and the second cavity are produced such that the second cavity encompasses the first cavity and such that the second cavity adjoins a base region of the MEMS structure and a base region of the decoupling structure.
摘要:
A semiconductor package includes an electrically conductive lead-frame, including a first die paddle having a first opening, and a plurality of electrically conductive leads, a ridge formed around a perimeter of the first opening, and an electrically insulating molding compound. The electrically insulating molding compound includes an interior cavity being defined by a planar base surface and outer sidewalls, a second opening formed in the base surface, and an interior sidewall within the interior cavity. The molding compound is formed around the lead-frame with the first die paddle in the interior cavity. The first and second openings are aligned with one another so as to form a port that provides access to the interior cavity. The ridge and the interior sidewall form a dam that is configured to collect liquefied sealant and prevent the liquefied sealant from overflowing into the port or into adjacent regions of the interior cavity.
摘要:
A device includes a base substrate with a sensor component arranged thereon; a spacer layer on the base substrate, wherein the spacer layer is structured in order to predefine a cavity region, in which the sensor component is arranged in an exposed fashion on the base substrate, and a DAF tape element (DAF=Die-Attach-Film) on a stack element, wherein the DAF tape element mechanically fixedly connects the stack element to the spacer layer arranged on the base substrate and to obtain the cavity region.
摘要:
A device includes a base substrate with a sensor component arranged thereon; a spacer layer on the base substrate, wherein the spacer layer is structured in order to predefine a cavity region, in which the sensor component is arranged in an exposed fashion on the base substrate, and a DAF tape element (DAF=Die-Attach-Film) on a stack element, wherein the DAF tape element mechanically fixedly connects the stack element to the spacer layer arranged on the base substrate and to obtain the cavity region.
摘要:
A production method includes providing a semiconductor substrate with a wiring layer stack having cutouts on a first main surface region of the semiconductor substrate at which MEMS components are arranged in an exposed manner in the cutouts and projecting through contact elements are arranged at metallization regions of the wiring layer stack; applying a b-stage material layer cured in an intermediate stage on the wiring layer stack, such that the cutouts are covered by the b-stage material layer and the vertically projecting through contact elements are introduced into the b-stage material layer; curing the b-stage material layer to obtain a cured b-stage material layer; thinning the cured b-stage material layer; and applying a redistribution layer (RDL) structure on the thinned, cured b-stage material layer to obtain an electrical connection between the wiring layer stack and the RDL structure via the through contact elements.
摘要:
A device includes a base substrate with a sensor component arranged thereon; a spacer layer on the base substrate, wherein the spacer layer is structured in order to predefine a cavity region, in which the sensor component is arranged in an exposed fashion on the base substrate, and a DAF tape element (DAF=Die-Attach-Film) on a stack element, wherein the DAF tape element mechanically fixedly connects the stack element to the spacer layer arranged on the base substrate and to obtain the cavity region.
摘要:
The present disclosure relates to an apparatus comprising a substrate, wherein a MEMS module is arranged on a first side of the substrate, the output signal from said MEMS module changing in the event of a change in temperature. Furthermore, the apparatus has a housing structure which is arranged on a first side of the substrate and has a recess in which the MEMS module is arranged. The apparatus also has a layer which is applied to the housing structure and increases the heat capacity of the apparatus. The present disclosure also relates to a method for producing an apparatus of this kind.
摘要:
The present disclosure relates to an apparatus comprising a substrate, wherein a MEMS module is arranged on a first side of the substrate, the output signal from said MEMS module changing in the event of a change in temperature. Furthermore, the apparatus has a housing structure which is arranged on a first side of the substrate and has a recess in which the MEMS module is arranged. The apparatus also has a layer which is applied to the housing structure and increases the heat capacity of the apparatus. The present disclosure also relates to a method for producing an apparatus of this kind.
摘要:
A method for producing a MEMS sound transducer element includes, inter alia, providing a first substrate. The first substrate has a first substrate side, an opposite second substrate side and a membrane layer arranged on the first substrate side. A further method step includes performing a first etching from the second substrate side in a first surface section that is situated opposite the membrane layer, as far as a first depth. A further method step includes performing a second etching of the first substrate from the second substrate side in a second surface section in order to expose the membrane layer in the first surface section and to produce a back volume for the membrane layer, where the second surface section is larger than the first surface section and includes the first surface section.