Abstract:
A trunk piston marine engine lubricant comprises in respective minor amounts (A) an overbased metal hydrocarbyl-substituted hydroxybenzoate detergent system, and (B) a hydrocarbyl-substituted succinic acid anhydride, preferably made by halogen- or radical-assisted fractionalization processes, where the ratio of succinic anhydride to hydrocarbyl chains is in the range of 1.4 to 4. The lubricant, when used to lubricate such an engine fuelled by heavy fuel oil, exhibits improved control of asphaltene precipitation and deposition on engine surfaces.
Abstract:
A trunk piston marine engine lubricant comprises in respective minor amounts (A) an overbased metal hydrocarbyl-substituted hydroxybenzoate detergent system, and (B) a hydrocarbyl-substituted succinic acid anhydride made by halogen- or radical-assisted functionalization processes, where the ratio of succinic anhydride to hydrocarbyl chains is in the range of 1.4 to 4. The lubricant, when used to lubricate such an engine fuelled by heavy fuel oil, exhibits improved control of asphaltene precipitation and deposition on engine surfaces.
Abstract:
An oil composition comprises at least 50 percent by mass, based on the mass of the composition, of an oil and 0.01 to 25 percent by mass, based on the mass of the composition, of a polymer comprising at least one poly(lactone) segment. The at least one poly(lactone) segment is derived from a lactone substituted by one or two hydrocarbyl groups, or substituted hydrocarbyl groups, at least one such group having at least 4 carbon atoms. The oil compositions are suitable for use in the lubrication of the crankcase of internal combustion engines.
Abstract:
This invention relates to a lubricating oil composition comprising or resulting from the admixing of: (i) at least 50 mass %, based upon the weight of the lubricating oil composition, of base oil, (ii) at least one capped dispersant having number average molecular weight (Mn) of less than 1600 g/mol, (iii) at least one magnesium containing detergent, (iv) at least one calcium containing detergent, (v) at least one copolymer viscosity modifier that has: 1) a ratio of relative KV140/relative KV20 of 1.9 or more; 2) a ratio of relative KV100/relative KV70 or 1.30 or more; and 3) a viscosity index (ASTM 2270D) of 320 or more, when 1), 2) and 3) are measured on blend, having a KV100 of about 8 cSt, of the copolymer viscosity modifier and a group III base oil having a KV100 (ASTM D445) of about 4 cSt and a viscosity index (ASTM D2270) of about 120.
Abstract:
An oil composition comprises at least 50 percent by mass, based on the mass of the composition, of an oil and 0.01 to 25 percent by mass, based on the mass of the composition, of a polymer comprising at least one poly(lactone) segment. The at least one poly(lactone) segment is derived from a lactone substituted by one or two hydrocarbyl groups, or substituted hydrocarbyl groups, at least one such group having at least 4 carbon atoms. The oil compositions are suitable for use in the lubrication of the crankcase of internal combustion engines.
Abstract:
Concentrates containing specific functionalized diblock copolymers serve as effective additives for improving the cold flow behavior of fuels and oils, the copolymers being derived from a terminally-unsaturated intermediate polymer obtained via a metallocene process involving hydrogen.
Abstract:
A trunk piston marine engine lubricant comprises in respective minor amounts (A) an overbased metal hydrocarbyl-substituted hydroxybenzoate detergent system, and (B) a hydrocarbyl-substituted succinic acid anhydride made by halogen- or radical-assisted functionalization processes, where the ratio of succinic anhydride to hydrocarbyl chains is in the range of 1.4 to 4. The lubricant, when used to lubricate such an engine fuelled by heavy fuel oil, exhibits improved control of asphaltene precipitation and deposition on engine surfaces.
Abstract:
Concentrates containing specific functionalised diblock copolymers serve as effective additives for improving the cold flow behaviour of fuels and oils, the copolymers being derived from a terminally-unsaturated intermediate polymer obtained via a metallocene process involving hydrogen.
Abstract:
Concentrates containing specific functionalised diblock copolymers serve as effective additives for improving the cold flow behaviour of fuels and oils, the copolymers being derived from a terminally-unsaturated intermediate polymer obtained via a metallocene process involving hydrogen.
Abstract:
Concentrates containing specific functionalised diblock copolymers serve as effective additives for improving the cold flow behaviour of fuels and oils, the copolymers being derived from a terminally-unsaturated intermediate polymer obtained via a metallocene process involving hydrogen.