摘要:
Organic semiconductor-based devices such as thin film transistors, organic light emitting devices and solar cells have potential in low cost electronic and optoelectronic applications. The performance of these organic semiconductor-based devices is often limited by the large resistance between the organic semiconductors and counter electrodes. This invention provides device structures and methods to reduce the unwanted resistance.
摘要:
This invention provides an innovative multi-line structure and an effective four-terminal method for the resistivity measurement of semiconductor materials. The multi-line structure and the four-terminal method not only allow one to perform resistivity measurement on any inorganic and organic semiconductor thin film conveniently, rapidly and accurately but also offer the means to study resistivity uniformity across the semiconductor thin film.
摘要:
The present invention discloses all-in-one organic electroluminescent inks for balanced charge injection. When of single layer organic lighting emitting diodes are made from these inks, the charge balance can be readily achieved. By using the invented all-in-one organic electroluminescent inks, both the device structure and the fabrication process are simplified, which will increase the production yield and reduce the production cost in manufacturing such devices. This invention also teaches methods to fabricate single layer all-in-one organic light emitting diodes.
摘要:
MMIC circuits with thin film transistors are provided without the need of grinding and etching of the substrate after the fabrication of active and passive components. Furthermore, technology for active devices based on non-toxic compound semiconductors is provided. The success in the MMIC methods and structures without substrate grinding/etching and the use of semiconductors without toxic elements for active components will reduce manufacturing time, decrease economic cost and environmental burden. MMIC structures are provided where the requirements for die or chip attachment, alignment and wire bonding are eliminated completely or minimized. This will increase the reproducibility and reduce the manufacturing time for the MMIC circuits and modules.
摘要:
Transistors with a first metal oxynitride channel layer and a second metal oxynitride barrier layer are provided. The first metal oxynitride channel layer is lightly doped or without intentional doping to achieve high carrier mobility. Impurity atoms are introduced into the second metal oxynitride barrier layer and the donated carriers migrate or drift into the first metal oxynitride channel layer to effect high mobility conduction between source and drain.
摘要:
Metal oxynitride diodes having at least a first metal oxynitride layer of a first conduction type and a second metal oxynitride layer of a second conduction type are provided. The first oxynitride layer is selectively doped or un-intentionally doped and have high carrier mobility. The second oxynitride layer is also selectively doped or un-intentionally doped and have high carrier mobility. A compensated oxynitride drift layer having a low carrier density may be adopted to increase the breakdown voltage of the device.
摘要:
The present invention is related to high electron mobility transistors for power switching and microwave amplification and switching. More specifically, it related to a high electron mobility transistor with an improved gate to enhance the performance. When fabricating a high electron mobility thin film transistors, a first gate metal layer made of chromium alloy or tungsten alloy is deposited to reduce surface traps and to enhance the stability and integrity of the gates.
摘要:
MMIC circuits with thin film transistors are provided without the need of grinding and etching of the substrate after the fabrication of active and passive components. Furthermore, technology for active devices based on non-toxic compound semiconductors is provided. The success in the MMIC methods and structures without substrate grinding/etching and the use of semiconductors without toxic elements for active components will reduce manufacturing time, decrease economic cost and environmental burden. MMIC structures are provided where the requirements for die or chip attachment, alignment and wire bonding are eliminated completely or minimized. This will increase the reproducibility and reduce the manufacturing time for the MMIC circuits and modules.
摘要:
This invention provides a bifacial photovoltaic device to enhance the conversion of solar energy into electricity with a layer by layer additive structure. The bifacial photovoltaic device comprises an electrically conductive core electrode, a plurality of semiconductor layers covering one end region of the core electrode and at least a portion of the two faces of the core electrode, a first counter electrode, a second counter electrode, and a third counter electrode connecting the first and the second counter electrodes. The device may also comprise a light reflective layer and an anti-reflective layer. This invention also provides an array of bifacial photovoltaic cells with simple interconnection schemes.
摘要:
Due to strong needs to reduce the dimensions and the cost of the RF filters and to reduce the number of filters required in an mobile handsets and wireless system covering numbers of operation bands, tunable RF filters which can cover as many bands or frequency ranges as possible are needed so that the number of filters can be reduced in the mobile handsets and wireless systems. The present invention provides tunable surface acoustic wave (SAW) IDT structures with the resonant frequency of the acoustic wave to be excited and to be transmitted tuned by digital to analog converters (DACs). The DAC converts an input digital signal to an output DC voltage and provide DC bias voltages to the SAW IDTs through integrated thin film biasing resistors. The polarity and the value of the output DC voltage are controlled by the input digital signal to achieve selection and tuning of the resonant frequency of the SAW IDTs.