摘要:
A method of fabricating a semiconductor device is described. The method of fabricating a semiconductor device comprises providing a fin formed to protrude from a substrate and a plurality of gate electrodes formed on the fin to intersect the fin; forming first recesses in the fin on at least one side of the respective gate electrodes; forming an oxide layer on the surfaces of the first recesses; and expanding the first recesses into second recesses by removing the oxide layer. Related devices are also disclosed.
摘要:
The semiconductor device may include an insulating interlayer on the substrate, the substrate including a contact region at an upper portion thereof, a main contact plug penetrating through the insulating interlayer and contacting the contact region, the main contact plug having a pillar shape and including a first barrier pattern and a first metal pattern, and an extension pattern surrounding on an upper sidewall of the main contact plug, the extension pattern including a barrier material. In the semiconductor device, an alignment margin between the contact structure and an upper wiring thereon may increase. Also, a short failure between the contact structure and the gate electrode may be reduced.
摘要:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
摘要:
A method of fabricating a semiconductor device can be provided by etching sidewalls of a preliminary trench in a substrate that are between immediately adjacent gate electrode structures, to recess the sidewalls further beneath the gate electrode structures to provide recessed sidewalls. Then, the recessed sidewalls and a bottom of the preliminary trench can be etched using crystallographic anisotropic etching to form a hexagonally shaped trench in the substrate.
摘要:
A semiconductor device is provided. The semiconductor device includes a gate spacer that defines a trench on a substrate and includes an upper part and a lower part, a gate insulating film that extends along sidewalls and a bottom surface of the trench and is not in contact with the upper part of the gate spacer, a lower conductive film that extends on the gate insulating film along the sidewalls and the bottom surface of the trench and is not overlapped with the upper part of the gate spacer, and an upper conductive film on an uppermost part of the gate insulating film on the lower conductive film.
摘要:
A method of fabricating a semiconductor device can be provided by etching sidewalls of a preliminary trench in a substrate that are between immediately adjacent gate electrode structures, to recess the sidewalls further beneath the gate electrode structures to provide recessed sidewalls. Then, the recessed sidewalls and a bottom of the preliminary trench can be etched using crystallographic anisotropic etching to form a hexagonally shaped trench in the substrate.
摘要:
A semiconductor integrated circuit device includes a substrate. A gate structure is formed on the substrate and includes a gate insulating film and a gate electrode. A first sidewall spacer is formed on two sidewalls of the gate structure. A second sidewall spacer is formed on the first sidewall spacer. A recess compensation film is interposed between the second sidewall spacer and the substrate. An epitaxial layer is in contact with the recess compensation film.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.
摘要:
In a method of forming a capacitor, a first mold layer pattern including a first insulating material may be formed on a substrate. The first mold layer pattern may have a trench. A supporting layer including a second insulating material may be formed in the trench. The second insulating material may have an etching selectivity with respect to the first insulating material. A second mold layer may be formed on the first mold layer pattern and the supporting layer pattern. A lower electrode may be formed through the second mold layer and the first mold layer pattern. The lower electrode may make contact with a sidewall of the supporting layer pattern. The first mold layer pattern and the second mold layer may be removed. A dielectric layer and an upper electrode may be formed on the lower electrode and the supporting layer pattern.