摘要:
Provided is a photo-luminescence (PL) LCD including: electrodes that are disposed on bottom and top surfaces of front and rear substrate and create an electric field in liquid crystals (LCs); a nano-dot (ND) PL layer that is disposed on the bottom surface of the front substrate and emits light when irradiated with ultraviolet (UV) light, and a UV backlight unit that is located behind the rear substrate and supplying UV light to the ND PL layer. The UV backlight unit is excited by blue UV light having a wavelength range of 360 to 460 nm to emit light. The PD LCD having the above-mentioned structure suppresses absorption of UV light by LC and degradation of the LC while providing high light efficiency.
摘要:
A white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the blue LED light source into white light. The light conversion layer includes a green light emitting semiconductor nanocrystal and a red light emitting semiconductor nanocrystal. The white light emitting diode has a red, green and blue color (“RGB”) color locus which is within a chrominance error range (±4ΔE*ab) locus from the constant hue locus of each of sRGB color coordinates, or within a chrominance error range (±4ΔE*ab) locus from the constant hue locus of each of AdobeRGB color coordinates.
摘要翻译:白色发光二极管包括蓝色发光二极管(“LED”)光源和将来自蓝色LED光源的入射光转换成白光的光转换层。 光转换层包括绿色发光半导体纳米晶体和红色发光半导体纳米晶体。 白色发光二极管具有红色,绿色和蓝色(“RGB”)色彩轨迹,该色彩轨迹位于每个sRGB色坐标的恒定色调轨迹内的色度误差范围(±4&Dgr; E * ab) 来自每个AdobeRGB色坐标的恒定色调轨迹的色度误差范围(±4&Dgr; E * ab)。
摘要:
A coated nano particle and an electronic device using the composite nano particle as an illuminator are provided. The composite nano particle includes a nano particle receiving light and emitting light; and a coating material formed on a surface of the nano particle and having an index of refraction different from that of the nano particle. The coated nano particle is made by coating a surface of the nano particle with a material having an index of refraction, which has an intermediate value between an index of refraction of a matrix and an index of refraction of the nano particle as an illuminator, with a predetermined thickness. The light emitted from the nano particle is efficiently transferred to the outside as the light reflected from the matrix and absorbed by the nano particle is suppressed. Therefore, a luminous efficiency of the illuminator is improved, and an electronic device using the illuminator is provided.
摘要:
A semiconductor nanocrystal including a core including ZnSe, ZnTe, ZnS, ZnO, or a combination comprising at least one of the foregoing, wherein the core has a diameter of about 2 nanometers to about 5 nanometers and an emitted light wavelength of about 405 nanometers to about 530 nanometers; and a first layer disposed on the core, the first layer including a Group III-V semiconductor, wherein the semiconductor nanocrystal has a full width at half maximum of an emitted light wavelength of less than or equal to about 60 nanometers.
摘要:
A light-emitting unit for emitting light includes a light-emitting element and a light-converting layer. The light-converting layer includes a nanoparticle and an additive having an oxidation speed faster than an oxidation speed of the nanoparticle. The light-converting layer is disposed on the light-emitting element to increase the durability of the light-emitting unit.
摘要:
A semiconductor nanocrystal and a preparation method thereof, where the semiconductor nanocrystal include a bare semiconductor nanocrystal and a water molecule directly bound to the bare semiconductor nanocrystal.
摘要:
A nanoparticle complex, including a semiconductor nanocrystal; and a metal complex ligand on the surface of the semiconductor nanocrystal. The nanoparticle complex may further include a polymer shell contacting the metal complex ligand.
摘要:
A nanoparticle-resin composition includes a nanoparticle, a silicone resin having a reactive functional group at its terminal end, and a compound selected from a silane group-containing compound, a silazane compound, or a combination including at least one of the foregoing. In addition, a nanoparticle-resin composite includes a silicone resin matrix including the cure product of a silicone resin having a reactive functional group at its terminal end, a plurality of nanoparticle clusters dispersed in the silicone resin matrix, and a buffer layer encapsulating the nanoparticle cluster. The buffer layer includes a compound selected from a silane group-containing compound, a silazane compound, or a combination including at least one of the foregoing compounds.
摘要:
A white light emitting diode and a liquid crystal display device that realizes images using the white light are provided. The white light emitting diode includes a blue light emitting diode (“LED”) light source, and a light conversion layer which converts incident light from the LED light source into white light. The light conversion layer includes green light emitting semiconductor nanocrystal and red light emitting semiconductor nanocrystal. A light emitting peak wavelength of the green light emitting semiconductor nanocrystal is about 520 nanometer (nm) or more, a light emitting peak wavelength of the red semiconductor nanocrystal is about 610 nanometer (nm) or more, and full width at half maximums (FWHMs) of light emitting peaks of the green and red light emitting semiconductor nanocrystals are about 45 nanometer (nm) or less.
摘要:
A composition for a light emitting body-polymer composite, the composition including a light emitting body; and a cross-linkable composition including a monomer represented by Chemical Formula 1. A light emitting body-polymer composite prepared by cross-linking the composition and a light emitting device including the light emitting body-polymer composite are also provided.