摘要:
A structure (and method for forming the same) for an image sensor cell. The structure includes (a) a semiconductor substrate; (b) a charge collection well on the substrate, the charge collection well comprising a semiconductor material doped with a first doping polarity; (c) a surface pinning layer on and in direct physical contact with the charge collection well, the surface pinning layer comprising a semiconductor material doped with a second doping polarity opposite to the first doping polarity; and (d) an electrically conducting push electrode being in direct physical contact with the surface pinning layer but not being in direct physical contact with the charge collection well.
摘要:
A structure (and method for forming the same) for an image sensor cell. The method includes providing a semiconductor substrate. Then, a charge collection well is formed in the semiconductor substrate, the charge collection well comprising dopants of a first doping polarity. Next, a surface pinning layer is formed in the charge collection well, the surface pinning layer comprising dopants of a second doping polarity opposite to the first doping polarity. Then, an electrically conductive push electrode is formed in direct physical contact with the surface pinning layer but not in direct physical contact with the charge collection well. Then, a transfer transistor is formed on the semiconductor substrate. The transfer transistor includes first and second source/drain regions and a channel region. The first and second source/drain regions comprise dopants of the first doping polarity. The first source/drain region is in direct physical contact with the charge collection well.
摘要:
A pixel sensor cell structure and method of manufacture. The pixel cell comprises a doped layer formed adjacent to a first side of a transfer gate structure for coupling a collection well region and a channel region. Potential barrier interference to charge transfer caused by a pinning layer is reduced.
摘要:
A pixel for an image sensor includes a photosensor located within a substrate. A patterned dielectric layer having an aperture registered with the photosensor is located over the substrate. A lens structure is located over the dielectric layer and also registered with the photosensor. A liner layer is located contiguously upon a top surface of the dielectric layer, and the sidewalls and bottom of the aperture. The liner layer provides for enhanced reflection for off-axis incoming light and enhanced capture thereof by the photosensor. When the aperture does not provide a dielectric layer border for a metallization layer embedded within the dielectric layer, an exposed edge of the metallization layer may be chamfered.
摘要:
A pixel sensor cell structure and method of manufacture. The pixel cell comprises a doped layer formed adjacent to a first side of a transfer gate structure for coupling a collection well region and a channel region. Potential barrier interference to charge transfer caused by a pinning layer is reduced.
摘要:
A CMOS image sensor and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack to result in a pixel array exhibiting increased light sensitivity. The CMOS image sensor includes structures having a minimum thickness of barrier layer metal that traverses the optical path of each pixel in the sensor array or, that have portions of barrier layer metal selectively removed from the optical paths of each pixel, thereby minimizing reflectance. That is, by implementing various block or single mask methodologies, portions of the barrier layer metal are completely removed at locations of the optical path for each pixel in the array. In a further embodiment, the barrier metal layer may be formed atop the Cu metallization by a self-aligned deposition.
摘要:
A bond pad for effecting through-wafer connections to an integrated circuit or electronic package and method of producing thereof. The bond pad includes a high surface area aluminum bond pad in order to resultingly obtain a highly reliable, low resistance connection between bond pad and electrical leads.
摘要:
An imaging sensor with an array of FET pixels and method of forming the imaging sensor. Each pixel is a semiconductor island, e.g., N-type silicon on a Silicon on insulator (SOI) wafer. FETs are formed in one photodiode electrode, e.g., a P-well cathode. A color filter may be attached to an opposite surface of island. A protective layer (e.g., glass or quartz) or window is fixed to the pixel array at the color filters. The image sensor may be illuminated from the backside with cell wiring above the cell. So, an optical signal passes through the protective layer is filtered by the color filters and selectively sensed by a corresponding photo-sensor.
摘要:
An image sensor and method of fabrication wherein the sensor includes Copper (Cu) metallization levels allowing for incorporation of a thinner interlevel dielectric stack to result in a pixel array exhibiting increased light sensitivity. The image sensor includes structures having a minimum thickness of barrier layer metal that traverses the optical path of each pixel in the sensor array or, that have portions of barrier layer metal selectively removed from the optical paths of each pixel, thereby minimizing reflectance. That is, by implementing various block or single mask methodologies, portions of the barrier layer metal are completely removed at locations of the optical path for each pixel in the array. In a further embodiment, the barrier metal layer may be formed atop the Cu metallization by a self-aligned deposition.
摘要:
Structures and method for forming the same. The semiconductor structure comprises a photo diode that includes a first semiconductor region and a second semiconductor region. The first and second semiconductor regions are doped with a first and second doping polarities, respectively, and the first and second doping polarities are opposite. The semiconductor structure also comprises a transfer gate that comprises (i) a first extension region, (ii) a second extension region, and (iii) a floating diffusion region. The first and second extension regions are in direct physical contact with the photo diode and the floating diffusion region, respectively. The semiconductor structure further comprises a charge pushing region. The charge pushing region overlaps the first semiconductor region and does not overlap the floating diffusion region. The charge pushing region comprises a transparent and electrically conducting material.