摘要:
A method of manufacturing a fibrous material includes mixing at least two cordierite precursor materials to form a mixture. One or more of the at least two cordierite precursor materials is in a form of a fiber and the mixture includes about 43% to about 51% by weight SiO2, about 36% to about 41% by weight Al2O3, and about 12% to about 16% by weight MgO. The method also includes extruding the mixture to create a fibrous body, and heat treating the fibrous body, at a temperature of about 1200° C. to about 1420° C., to form the fibrous material including about 50% to about 95% by weight cordierite. A fibrous body includes an extruded substrate having a plurality of fibers including about 50% to about 95% by weight cordierite. The extruded substrate has a coefficient of thermal expansion in at least one direction of less than about 3.8·10−6 per ° C.
摘要:
A porous cordierite substrate and a method of forming a porous cordierite substrate including providing a fiber that includes at least one cordierite precursor material and providing at least one organic binder material. The fiber and the organic binder material are mixed with a fluid. The mix of fiber, organic binder material and fluid is extruded into a green substrate. The green substrate is fired to enable the formation of bonds between the fibers and to form a porous cordierite fiber substrate.
摘要:
A method of manufacturing a fibrous material includes mixing at least two cordierite precursor materials to form a mixture. One or more of the at least two cordierite precursor materials is in a form of a fiber and the mixture includes about 43% to about 51% by weight SiO2, about 36% to about 41% by weight Al2O3, and about 12% to about 16% by weight MgO. The method also includes extruding the mixture to create a fibrous body, and heat treating the fibrous body, at a temperature of about 1200° C. to about 1420° C., to form the fibrous material including about 50% to about 95% by weight cordierite. A fibrous body includes an extruded substrate having a plurality of fibers including about 50% to about 95% by weight cordierite. The extruded substrate has a coefficient of thermal expansion in at least one direction of less than about 3.8·10−6 per ° C.
摘要:
This invention provides a system and method for establishing proper quantities of components in the initial mixture to be used in the fabrication of a porous ceramic substrate. The components typically consist of a solvent, a bulk fiber such as mullite, an organic binder for use in extrusion of the green substrate, a glass/clay bonding phase that bonds the fibers upon high-temperature curing and a pore former that defines gaps between the particles and is vaporized out of the substrate during curing. By identifying the controllable factors related to each of the components, and adjusting the factors to vary the resulting strength and porosity of the cured substrate, an optimized strength and porosity performance can be achieved. The controlling factors for each component include its relative weight percent in the mixture. The fiber component is also controlled via fiber diameter, diameter uniformity, and fiber length-to-diameter aspect ratio. Likewise, pore former is also controlled by particle size and shape and particle density. The bonding phase may also be controlled based upon its contribution to the viscosity at sintering temperature.
摘要:
A porous fibrous honeycomb substrate having an aluminum titanate composition and methods of producing the same are provided herein. Precursors of aluminum titanate are provided in an extrudable mixture that includes fiber materials to form a green honeycomb substrate. When cured, the precursors of aluminum titanate form an aluminum titanate composition, with the fiber materials defining the porous microstructure. Various composite structures including aluminum titanate are provided to form a porous honeycomb substrate that can be configured to be filtration media and/or a catalytic host.
摘要:
A fibrous ceramic material comprises a plurality of fibers having a modified aluminosilicate compositional structure (i.e., x(RO).y(Al2O3).z(SiO2) or w(MO).x(RO).y(Al2O3).z(SiO2)). The fibrous ceramic material is form by combining two or more x(RO).y(Al2O3).z(SiO2) or w(MO).x(RO).y(Al2O3).z(SiO2) precursors in which at least one of the two or more precursors is in fiber form. The resulting fibrous ceramic material has a low coefficient of thermal expansion (i.e., ≦4.7×10-6/° C.).
摘要翻译:纤维状陶瓷材料包括多个具有改性的硅铝酸盐组成结构的纤维(即,x(RO)y(Al 2 O 3)z(SiO 2)或w(MO)x(RO)y(Al 2 O 3) SiO 2))。 纤维状陶瓷材料是通过组合两种或多种x(RO)y(Al 2 O 3)z(SiO 2)或w(MO)x(RO)y(Al 2 O 3)z(SiO 2)前体形成的,其中至少 两种或更多种前体之一是纤维形式。 所得到的纤维状陶瓷材料的热膨胀系数(即,n1E = 4.7×10-6 /℃)。
摘要:
A fibrous ceramic material comprises a plurality of fibers having a RxMg2Al4+xSi5−xO18 or RxMg2−xAl4Si5O18 compositional structure. The fibrous ceramic material is form by combining two or more RxMg2Al4+xSi5−xO18 or RxMg2−xAl4Si5O18 precursors in which at least one of the two or more RxMg2Al4+xSi5−xO18 or RxMg2−xAl4Si5O18 precursors is in fiber form. The fibrous ceramic material is shaped to form a fibrous body in which at least about 20% of all fibers therein are aligned in a substantially common direction.
摘要:
A porous fibrous honeycomb substrate having an aluminum titanate composition and methods of producing the same are provided herein. Precursors of aluminum titanate are provided in an extrudable mixture that includes fiber materials to form a green honeycomb substrate. When cured, the precursors of aluminum titanate form an aluminum titanate composition, with the fiber materials defining the porous microstructure. Various composite structures including aluminum titanate are provided to form a porous honeycomb substrate that can be configured to be filtration media and/or a catalytic host.
摘要:
A porous substrate and method of forming a porous substrate including providing a fiber material, providing at least one extrusion aid, and providing at least one washcoat precursor. The fiber material, the at least one extrusion aid and the at least one washcoat precursor are mixed to provide an extrudable batch. The extrudable batch is extruded into a green substrate. The green substrate is fired to form a porous rigid substrate and to form a washcoat at least partially coating the fiber material.
摘要:
Low cost aluminosilicate fibers are used to form a ceramic substrate material using inorganic binders that promote the formation of stable compounds that inhibit the formation of crystal silica, or cristobalite, when the substrate is used or exposed to high operating temperatures. The aluminosilicate fibers are mixed with additives including organic and inorganic binders and a fluid to form a plastic mixture. The plastic mixture is formed into a green substrate, and subsequently cured into the ceramic substrate. The fiber-based constituents permit the formation of rigid porous structures for filtration, insulation, and high temperature processes and chemical reactions.